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Influence of Flexibly Mounted Rolling
Element Bearings on Rotor Response

Part 1—Linear Analysis

The paper evaluates the influence of damped, linear flexibly mounted rolling-element

bearings on dynamic rotor unbalance response.

The system analyzed is treated as a

general four degree of freedom unbalanced rotor mounted on damped flexible supports

and includes rotor gyroscopic effects.

The rotor equations of motion are solved for

synchronous precession over a wide range of speeds for various support conditions.
Rotor performance curves on bearing amplitude, forces transmiited, phase angles as a
function of speed for various values of support damping are computer plotted to illustrate
rotor and bearing performance over a wide range of speed and operating parameters
Results indicate that forces transmitted to the bearings by the rotor synchronous un-
balance response can be dramatically reduced by proper design of the bearing support

characteristics.

Introduction

THE present design philosophy in commercial gas
turbine applications is to extend the unit operating life and also
the operating hours between scheduled inspections and down-
time. The gas turbine life is influenced by such factors as the
stress-rupture life of the turbine blades and the life of the bear-
ings. The rolling element bearing life is a function of speed
and of the applied axial and radial forces. These various bearing
forces may be due to bearing preload, turbine and compressor
aerodynamic forces, gyroscopic loads caused by aircraft maneu-
vers, or dynamic loading caused by rotor unbalance. It is the
purpose of this paper to deal predominantly with the transmitted
bearing forces caused by rotor unbalance. The rotor unbalance
may excite one or more critical speeds of the rotor itself, and may
also induce resonances in the supporting structure.

The problem of minimization of the rotor unbalance response
becomes particularly acute in the design of high speed lightweight
rolling element supported gas turbines which must operate
smoothly over an extended speed range. One obvious method
to limit the rotor amplitude is to design the rotor and support
structure relatively stiff so as to place the majority of the critical
speeds above the operating range. This method was found
desirable by Alford [1],! in the case of the turbine instability
encountered with several different designs of aireraft engines
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which all had relatively large rotor flexibility and low eritical
speeds. In all cases the stability was improved by increasing
the rigidity of the turbine and support system.

Several manufacturers [2], [3], [4], [5] have reported that a
smooth engine may be obtained by mounting the rolling element
bearings in a flexible spring mount to control the bearing forces
transmitted. Van Nimwegen reports on good success achieved
with an undamped flexible mount which allows a maximum
amount of travel from 0.0025 to 0.005 in. The flexible support
system thus functions as a bilinear spring, controlling the rotor
amplitudes at resonance [5]. The stiffness of the flexible ring
can be carefully designed to locate the critical speeds at suita-
ble values so as not to produce large resonant vibrations in the
rotor operating speed range.

Hamburg and Parkinson [6] report on effective use of a
damped flexibly mounted ball bearing in controlling the turbine
vibrational amplitude. In this design the outer race of the ball
bearing is mounted in a flanged flexible cylinder which is bolted
to the rotor casing. The cylindrical support is separated from
the stationary housing by a thin film of oil to form a squeeze film
bearing. K. W. Snow, in his comments to Alford’s paper [1],
mentions the successful use of an oil film between the bearing
and housing on Rolls Royce engines. Satisfactory performance
was obtained with respect to both synchronous precession caused
by unbalance as well as sclf-excited nonsynchronous shaft
whirling.

Hamburg reports that in the design of the Continental Model
217-S turboshaft engine a relatively stiff shaft was used and the
resonant frequencies of the system controlled by regulating the
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69-LubS-8. spring rates of the bearing support structure. The normal
Nomenclature
A = coefficient matrix ance station, in. ing, in.
C = damping coefficient, lb-sec/in. I polar moment of inertia, lb- :
: A : M = rotor mass, — — sec?
¢, = radial displacement of rotor in.-sec? in.
mass center from axis of Iy transverse moment of inertia M,,, = unbalance moment about z,
rotation, in. about the rotor mass center, y axis, in.-1b
Fp.,, = horizontal and vertical com- Ib-in.-sec? : : b
ponents of bearing force, 1b K stiffness coefficient, 1b/in. My = bearing housing masses, T
Fsz,y = horizontal and vertical com- L = span between bearings, in. o
ponents of support force, Ib Ly = distance from the first bear- Ry, = radial displacement of the
Fu = unbalance force, 1b ing to the rotor mass center unbalance masses, in.
H; = axial distance from the first L, distance from the rotor mass e

bearing to the i’th unbal-

center to the second bear-
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operating range was free from ecritical speeds with the first and
second modes below the idle speed. The third or flexible free-
free critical speed (corresponding to the case of 0 bearing stiffness)
was placed well above the operating speed range. Under these
design conditions, the rotor first two critical speeds are essen-
tially rigid body modes as shown by Suter [7] and Linn and
Prohl [8]. Cooper [9], a research engineer with Rolls Royce,
reported in 1963 on the experimental use of the hydrodynamic
squeeze film bearing incorporated in a rolling element test rotor.
He noted that the oil film provided good attenuation of the rotor
unbalance response, but when a larger squeeze film bearing of
identical clearance was used, it appeared that the higher film
forces developed would not permit inversion through to the
critical speed. Rolls Royce has extended this work and is
presently using a squeeze film mounting on the Vickers Super
VC10 Conway engines [10].

Although a number of companies have employed damped
and undamped flexibly mounted bearings on gas turbines, little
analysis has been presented in the literature as to the desirable
range of stiffness and damping characteristics that the bearing
supports should possess to minimize the amplitudes and forces
transmitted over a given speed range. It is the intent of this
paper to present quantitative information on desirable values of
stiffness and damping of bearing mounts. In this particular
paper only linear support stiffness and damping characteristics
will be taken into consideration. In a squeeze film bearing as
used by several companies, the hydrodynamic forces generated
are highly nonlinear (as shown by Wood [11]) and therefore the
analysis presented here is valid only for small amplitudes of
motion for this type of bearing.

Rotor Equations of Motion

It i1s assumed that the gas turbine or rotor is designed to be
relatively stiff and behave as a rigid body throughout the oper-
ating speed range. This assumption is valid only if the rotor
free-free flexible critical speed based on zero bearing stiffness
is considerably above the design speed.

Six degrees of freedom are required to represent the rigid
rotor. The rotor governing equations of motion may be ex-
pressed in terms of the displacements and rotations of the rotor
mass center or in terms of the x, y, z displacements of the two
bearings (see Fig. 1).

The general rotor equations of motion including rotor accelera-
tion are highly nonlinear and represent a difficult system of
equations to solve analytically. These equations may be con-
siderably simplified if one assumes small bearing displacements,
constant rotor angular velocity, and neglects the rotor axial
motion. These assumptions effectively reduce the number of
rotor equations of motion from 6 to 4. Thus it is assumed that:

&3 = w = const oy = wl
: T2 — 11
Sinan =~ @ = < 1 and
b
¢ Yol L
SHleRE el = e ]

]J

If it is assumed that the rotor unbalance is small in comparison
to the rotor weight and also that the rolling element bearings are
self aligning (so that no bearing moments are exerted on the
rotor) then the rotor equations of motion are given as follows:

2, Mi, = Fga + Fpe + 0Mw2R; cos wt
+ OMw?R,y cos (wl + @) (1)
Y M = Fpgn + Faya 4 SMic2?Ry sin ot
+ MR, sin (Wt + ¢) (2)
ai: 760 + wéel, = LiFgp. — L Fpa
+ OMipRiws? cos wt + SMop,Row? cos (wt 4+ @)  (3)
ay: Ipée — wéul, = LsFpy — LhiFp,
+ 0M p1Riw? sin wt + 6Mopalew? sin (wt + ¢)  (4)

The four bearing housing equations of motion are given as
follows:

Do Nt — s =T de= 1% 5

szis
O ax G AR < (6
Ypi- mYp: = FByi 73 T Fsyz'.v RS 1) 2 (6

If the mass m; of the bearing housing is neglected then the
rolling element bearing reaction may be equated to the support

reaction

Fg.. = Fs:ci & 2 —

; 1= 1,2 i
FByi' =% Fsyl'

If angular misalignment is not considered for the damped
flexible support, then the most general support system such as a
linearized squeeze film damper will require 4 stiffness and 4

Nomenclature
TRD = dynamic transmissibility = a1 = angular shaft displacement in sec?
Fg/Fu the z-z plane, rad ¢ = dimensionless axial coordinate
U = column vector of unbalance o, = angular shaft displacement = z/L
components S s i 5 y k :
b Napen in the y-z plane, rad p = axial location at which un-
z,y = shaft absolute horizontal and 4] ) 146, LA X
; : 3 a3 = angular shaft rotation about balance forces act (mea-
vertical displacement, in. 5
: 3 2 axis sured from the rotor mass
iy = absolute displacement of rotor :
e B.,, = phase angle between the un- center), in.
mass center, 1. JERY il ¢ B
- . . alar ) H q . .
x5,y = bearing horizontal and verti- (lfe 10 i atn i S pi,2 = axial location of the unbalance
cal displacement, in. QLRI I, (e planes from the rotor mass
Tiey1,e = absolute shaft displacements Ba = phase angle between the un- center, in.
at the first and second bear- balance moment and the T il
2 p— . ar 3 90 i 2
ing locations angular shaft displacement, ¢ = angu ‘ul 1*2) acement of the
5 : radial unbalance planes, deg
z = shaft axial coordinate mea- deg 2l
red from the first bear- Ib = a ar velocity, rad/
o d b t bea omy,. = rotor unbalance masses, — — @ shaft angular velocity, rad,
ing, in. in. sec
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damping coefficients to represent the support.
Fopi = —[Copp; + Copypi + Koop:

K Ypd; i=12 (8
= [Cyyims - Cyetps K, ypi

T DR ()

Fsyiz

If the rolling element stiffness is considerably greater then the
support stiffness and damping values such that kz > kzz, 0Cs,
etc., then the relative bearing displacements may be neglected
and the absolute rotor displacements z; are equal to the absolute
bearing displacements xp;.

Substituting:
a0 S dbit U = Ui
T L RN
L11172 — Lm L1y2 e L2y1
Tk =05 e R e
L L

and equations (7)-(9) into equations (1)—(4), the linearized equa-
tions of motion of the four degree of freedom rigid body rotor in
damped elastic supports are given by:

M
f (Llj2 + Lijl) + Klrrxl + K2;r;rxﬁ + Cl:cz-/i:]
+ Cozatz + Croyts + Coryte + Kizyys + Koayye

= OMiw?R: cos wt + SMsw?R, cos (wt + ¢) (10)
M
i (Lagje + Loti) + Kiyyys + Koyyys + Crywtis
-+ Czyyyz + Clyxfi)l -+ Czyszz + Klyxxl —+ KZyzyi
= SMw?R; sin ot + OM.w?R, sin (wt + @) (11)

Ao s o
Iy ( : 7 Il\) < Ipw (@#) 4 Coralindts — Croxln®iCozyLsys

— Creylith + Kozelots — Kizzlnwi + Kogyloys — KizyLays
= OMipiRiw? cos ol + Mapaltaw? cos (wt + ¢)  (12)
Iy <2Tyl> = 1@ <—Z‘L 1> + CoyyLogis — CryyInth + Coyelins

— Cryzlaniy + Koyyloys — Kiyylnyr + Koyoliyre
= K;,,,lel = 53[1P1R1w2 sin wi
+ SM,ypsRow? sin (b + ¢)

(13)

If the damped, flexible supports are formed by spring mounted,
squeeze film hydrodynamic bearings then in general the cross
coupling stiffness and damping terms will be present in the
equations. Also note that if the rotor mass center is not sym-
metrically located in the bearing span, then different reactions
may be expected from the two bearings.

Method of Solution

Assume a steady-state motion of synchronous rotor precession.

=1,2

z; = Z,; coS wt + x,; sin wt :
7 (14)

Y = Yeoi COS W + Y; SIn wi

Upon substituting the above displacement relationships into
equations (10)—(13) the following eighth order matrix is ob-
tained after equating the sin and cos coefficients of the four
equations.

el 4l oo, Al Rt
A21 Agg ..... Zs1
A31 60 d T2
Ts2
ycl
Ys1
Ye2
LAs Asgs i—ysaJ
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OM Ry + 0M:Rs cos ¢ 7]
—O0M R, sin ¢
OM R, sin ¢
6M1R1 + BM‘ZRQ COoS ¢
OMp1 Ry + 6Msp2Rs cos ¢
—O0M,p:R: sin. ¢
oM 2sz2 sin d)

LOM1p1 Ry + 6M2Rep; cos ¢-

(15)

Or in matrix notation:
20X = U (16)

The solution to the unknown column vector X is given by:

X = AT av)
The steady state solution is therefore given by:
= |z e ¢ 5
Z; Ile (JT)S (0.) 1//11)} s 1’ 9 (18)
Vi ‘Z/z‘ sin (wt — 1//1/1')

where:

\/xciz I @B !(l/i‘ = '\/?/niz +-y—u-2

s s
tan—1 [4“], ¥, = tan~! [ y_”]
Loy Tsq

The displacement X at any arbitrary point { measured along
the shaft from the first bearing is given by:

z(¢) = \z‘ cos (wt — ¥,)

It

Il

2%

(19)

where:

lz| = V/@all — 1 4 (2a)® + @all — 1+ $zn)?

e el ROl (e
¥a({) = tan (xcl[l — {1 =F fxﬂ)

Derivation of Phase Angles

The resultant exciting force due to the two planes of unbalance
can be resolved into two components in the z and y directions as
follows:

cos (wt + ¢)
sin (wt + @)

cos wt

Fu,,, = 0Mw?R: { ; } + OMyw R, { } (20)
sin wi

The unbalance force components can be expressed in terms of
the total rotor mass M, the radial displacement e, of the rotor
mass center from the axis of rotation, and a phase angle .

cos (wt + \[/)}

sin (ot + ¥) el

Fu,,, = Mew* {

where:

1
Lo /(8MiRy)? + (BM3Ry)? + 28M\SMRiR, cos ¢

* [ 8111 sz sin d) ]
Y = tan™!
6M1R1 + 6M2Rz (oN) ¢
Comparison of equations (18) and (21) shows that the rotating
unbalance load leads the angular velocity vector by an angle of
Y while the rotor response lags the angular velocity by phase
angles of ¥, and V¥, respectively, for the x and y directions.
Thus the phase angles between the rotating unbalance and the
x and y rotor response are given by:

Bz'y(g-) = ‘// + ‘b:tyll

If B, or B, is positive, then the forcing function is leading the
rotor response. Note that the phase angle will vary along the
shaft and that the values observed at the first bearing will not

3
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Fig. 2 Rofor critical speeds versus bearing stiffness

in general correspond to the values obtained at the second bearing
location. If the bearing support characteristics are isotropic,
then the phase angles in two orthogonal directions will be identi-
cal; thatis 8, = B, = 8.

If the resultant rotor unbalance is not acting through a radial
plane at the rotor mass center, then unbalance moments will be
developed which will cause rotor conical motion.

The moments due to unbalance about the x and y axes are
given by:

e L e
(23)
—sin (ot + ¥,,)
M., = M 2 ’
2.y €.,pW [ S } (24)

where p represents the axial location of the radial plane (measured
from the rotor mass center) at which the resultant of the un-
balance forces act and is given by:

1l
Y= e V (o1 R10M,)? + (peRoMy)? + 2p1psRiR0M 10 M 5 cOS ¢

SEERy l: p2L220M 5 sin ¢ ]

p1 Ry 6M; + p.Ro6M, cos ¢

The angular displacement of the rotor about the y axis is given
by
di5) = Al
L

o = = |aa| cos (@t — Yum)

(25)

where:

]_ 1
a = 7 V(@ — za) + (@2 — za)?

Tez — Ts
o e [_i]
Tez — Ta
Hence the phase angle between the exciting unbalance moment
and the conical response is given by:

Barz = ¥ + Y (26)

A positive angular phase angle indicates that the exciting mo-
ment is leading the conical rotor response,

4

Computer Program “Rotor 4P”

A computer program was written to obtain the four degree of
freedom steady-state rotor unbalance response as given by the
preceding analysis. The equations of motion can be solved
over a given speed range by specifying the initial speed, the
speed increment, and the final speed. A total of eight linearized
support stiffness and damping coefficients may be specified at
each bearing location [12]. These coefficients may be either
constant or speed dependent.

In addition to computing the rotor amplitudes of motion and
the bearing forces transmitted, the phase angles of the rotor dis-
placements and rotations relative to the excitation forces and
moments caused by unbalance are also computed. The program
also has the provision of computing the amplitude and phase
angle at any arbitrary location along the shaft.

In a typical computer run, the rotor behavior may be calcu-
lated over a speed range of 0 to 30,000 rpm with a speed incre-
ment of 50 rpm. This will produce 600 values per variable to
cover the specified speed range. For example, if two ampli-
tudes are to be compared for three values of damping then there
are 3600 points to plot for this particular graph. To aid in
the process of data analysis and reduction, Calcomp plotter
procedures were developed to automatically plot and secale the
data over the range of speed. The variables plotted by the pro-
gram are amplitude, bearing force, and phase angles.

Analysis of Sample Gas Turhine

As an example of the influence of the support system on the
rotor unbalance response, consider the sample case of a small
two bearing jet engine which is required to operate between a
design speed of 28,000 rpm and an idle speed of 60 percent
of design speed. The rotor-bearing system should be designed so
that no critical speeds or excessive rotor amplitudes of motion
caused by unbalance exist in the operating speed range.

Fig. 2 represents the first two critical speeds for a small gas
turbine as a function of bearing stiffness for a range of stiffness
varying from 1000 to 1,000,000 Ib/in. To calculate the critical
speeds, the rotor was divided up into a number of mass stations
and the flexible rotor critical speeds were calculated by a stan-
dard type Prohl, Myklestad [13] matrix transfer method. The
values of the flexible rotor critical speeds are shown as the
dotted lines in Fig. 2. To calculate the rigid body ecritical
speeds and to obtain the mass and inertia data required for the
computer program, the rotor total weight and its centroid were
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Fig. 3 Bearing amplitude versus frequency for various values of support damping
—K = 10°
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Fig. 4 Force transmitted versus frequency for various values of support damping —K = 10°

determined along with the values of the rotor polar and trans-
verse moments of inertia about the centroid. The solid lines of
Fig. 2 represent the rigid body critical speeds for forward syn-
chronous precession. Note that for bearing stiffnesses in excess
of 100,000 Ib/in., the influence of shaft flexibility causes a reduc-
tion in the critical speeds as predicted by rigid body theory.
Below 100,000 1b/in., the effect of shaft flexibility should be of
minor significance and the rigid body analysis should give ac-
curate results as to rotor amplitude, phase angles, and bearing
forces transmitted.

In addition to the requirement of low rotor amplitudes of
motion throughout the speed range, the rotor should have long
bearing life which is a direct function of the transmitted bearing
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force. In particular, it is desirable to have an engine which will
not suffer a catastrophic failure in the event that a turbine blade
is lost. In the following figures, it has been assumed that the
turbine blade has failed, resulting in an unbalance of 0.60 oz-in.
at an axial distance of four inches from the first bearing.

As a first step in evaluating the rotor performance for various
values of support stiffness and damping, the simplest case of
isotropic stiffness and damping will be assumed for both bearing
supports. In the first case, it will be assumed that the support
stiffness is sufficiently high so that the rotor is operating below
critical speeds. Fig. 2 shows that if the support stiffness is
greater than 1,000,000 1b/in., the rigid body critical speeds are
above the design speed range. Fig. 3 represents the amplitude
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at the first and second bearings for a support stiffness of K
1081b /in. and for damping values of ' = 1, 20, and 100 lb-sec/in.
The subseript 1 of the damping coefficient C refers to the first
bearing while the subscript 2 refers to the second bearing ampli-
tude. Inspection of the amplitude curves shows that, as ex-
pected, there are no critical speeds within the operating range.
For ¢ = 1 the absolute amplitude at the first bearing at 30,000
rpm is 1.9 mils while the second bearing amplitude is 1.3 mils.
Increasing the damping from 1 lb-sec/in. to 20 causes little
apparent reduction in the rotor amplitude. If the support
damping is increased to ¢ = 100 lb-sec/in. then the rotor ampli-
tude at the first bearing is reduced to 1.4 mils while the second
bearing amplitude is reduced to 0.80 mils.

From the standpoint of rotor amplitude alone, these values

of bearing displacements are satisfactory; however, the stiff
support system will cause large forces to be transmitted through
the bearings. Fig. 4 represents the bearing forces transmitted
versus rotor speed for various values of support damping with
K 10% Ib/in. Note that the force transmitted at the first
bearing for C 1 is 2155 1b and for C; = 100 lb-sec/in. this
value is reduced only to 1547 1b. Although the rotor amplitude
is within acceptable limits in this case, the forces transmitted
are excessive at design speed for this high bearing stiffness.

In Case No. 2, Fig. 5, a reduced support stiffness of 100,000
Ib/in. was assumed. This places the rotor first and second
critical speeds at 11,000 and 17,500 rpm which causes the second
critical to fall within the speed operating range. If the support
damping is very light, then excessive rotor excursions will oceur

Transactions of the ASME
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Fig. 8 Angular phase angle versus frequency for K = 10°

at the criticals. For a damping value of ¢ = 20, the maximum
amplitude is 4.2 mils at the first bearing and occurs at the
second critical speed (conical mode) at 18,500 rpm. Note that
the support damping has caused a slight increase in the actual
critical speed above the value predicted for an undamped system.
This is similar to the situation reported in [14] for the single
mass model. If the damping is increased still further to 100
Ib-sec/in. then there is no observable critical speed response of
the system as the amplitudes at both bearings increase smoothly
with speed. For example, at 30,000 rpm the motion at the
first bearing is 1.6 mils and only 0.5 mils at the second bearing.
Fig. 6 represents a plot of the bearing forces transmitted as a
function of rotor speed for various values of damping for K =
105 lb/in. If the support damping coefficient C = 1 then a
maximum force of 6400 lbs will be developed at the second
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critical speed, while a force of over 5400 1b will be transmitted
through the second bearing. Thus if the engine were to operate
in the speed range of 16 to 20,000 rpm for any significant length
of time, bearing damage could be expected. As the damping is
increased, the maximum forces developed at the critical speeds
decreases. For example with ¢ = 20 the maximum force
transmitted to the first bearing is reduced to 441 lb. If the
bearing damping is increased to 100 lb-sec/in. the force trans-
mitted at 17,500 rpm is reduced to only 260 1b. Fig. 5 shows that
with this level of damping in the support system, no critical
speed problem will be encountered in the entire speed range.
The bearing forces transmitted for ¢ = 100 increase with speed
and the maximum bearing force of 515 lb at the first bearing
occurs at the maximum rotor speed of 30,000 rpm.

Thus it appears that there is an optimum value of damping
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between 20 and 100 Ib-sec/in. that should be employed with this
stiffness value. This optimum value is a compromise between
the forces transmitted at the critical and the bearing forces
developed at the maximum rotor speed. If the design operating
speed lies above the rotor critical speeds then damping will re-
duce the forces transmitted at the critical but will raise the
values at higher speeds.

Fig. 7 represents the phase angle between the radial unbalance
vector and the rotor amplitude at a distance of 12.50 in. from
the first bearing which corresponds to the rotor mass center.
Note that the lines for all damping values intersect at 90 deg for
11,000 rpm. This point represents the undamped cylindrical
natural frequency. The phase angle curves versus speed for
the rotor mass center appear to be very similar to the single
mass model with the exception that for light damping values
there can be an abrupt phase change occurring at the second
or conical critical speed. As damping is increased, this abrupt
change in phase is suppressed. At very high speeds the various
damping lines will all asymptotically approach 180 deg. This
implies that the rotor mass center has completely inverted and
lies on the axis of rotation.

Fig. 8 represents the phase angle B, between the unbalance
moment and the angular amplitude as given by equation (26).
For low values of damping at speeds below the first critical, the
angular amplitude and unbalance moment vectors are 180 deg
out of phase. At the first or cylindrical critical there is a rapid
change in phase as the angle approaches 0 over a very narrow
speed range. Note that an increase in support damping will
suppress this rapid angular phase angle change at the first critical
speed. As the frequency approaches the second critical, which
is primarily a conical mode, the curves of various damping all
intersect at a point which indicates the angular amplitude is
leading the unbalance moment by 90 deg. When the support
damping is increased to 100 lb-sec/in., the angular phase angle
change proceeds smoothly from 180 to 360 deg as the limiting
value.

Fig. 9 represents the displacement phase angles at both bear-
ings with respect to the radial unbalance vector. For light damp-
ing where C = 1, the motion at both bearings is in phase up to
the first critical at 11,000 rpm. At this speed, both bearings
undergo a rapid phase angle change of 0 to 180 deg but still
remain in phase relative to each other. As the speed is increased

beyond the first critical the second bearing phase angle remains
at 180 deg but the first bearing returns to 0 degrees. Thus the
two bearing displacements are now 180 deg out of phase. When
the speed reaches the second critical speed the bearing displace-
ments undergo another rapid 180 deg transition in phase in which
the second bearing approaches 360 or 0 deg and the first bearing
180 deg. The bearing displacements are in phase at the first
critical which indicates that this is essentially a cylindrical mode
while the out of phase relationship indicates that the second
critical is a conical mode. Note that as the bearing support
damping is increased beyond 20 lb-sec/in. the phase reduction
experienced by the first bearing between first and second criticals
is suppressed and the phase angle change proceeds smoothly
from 0 to 180 deg for the first bearing and from 0 to 360 deg for
the second bearing. As the rotor speed increases, the rotor will
invert until it finally rotates about its prineipal inertia axis.
If the support damping is sufficiently high so as to prevent the
complete inversion of the rotor, then high bearing forces will be
generated. For example, at 30,000 rpm the damping value of
C = 100 reduces the first bearing displacement phase angle from
360 to 260 deg and the second bearing from 180 to 130 deg.
This value of damping is excessive and the examination of Fig. 6
shows that the high bearing forces will be transmitted for this
case at the design speed.

Rotor Optimum Support Characteristics

In order to determine the optimum bearing support character-
istics, a computer program ROTOR 4M was written to evaluate
the rotor amplitude and bearing forces transmitted over a given
speed range and search for the maximum rotor amplitudes and
forces. The program calculates the rotor amplitudes and forces
at each speed increment and iterates the speed until the maxi-
mum amplitudes or force values at each bearing are obtained.
This program was used to evaluate the bearing forces developed
for support stiffnesses ranging from K = 10% to KX = 10° Ib/in.
and damping values ranging from ¢' = 1 to 1000 lb-sec/in.

Fig. 10 represents the maximum bearing force versus damping
for various values of support stiffness. The solid line of Fig.
10 represents the force at the rotor critical speed while the dotted
line represents the force obtained at the maximum rotor speed
of 30,000 rpm. With a high support stiffness value of K =
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stiffness values K = 10%* and K = 10°

10° Ib/in., the rotor critical speeds will be above the operating
speed and the force transmitted will range from 2000 to 00 lb
as the damping is increased to 1,000 lb-in./sec. Note that the
asymptotic limit of 800 1b as C > 1,000 represents the force
transmitted through a perfectly rigid support. Thus operating
below the critical speed with the high support stiffness will
generate a greater bearing force than if the bearing and support
system were perfectly rigid.

For K = 10° 1b/in., the maximum bearing force occurs at the
second critical speed and decreases rapidly as the damping is in-
creased to 30. Above C values of 30 there are no observable
critical speeds and the maximum force occurs at the maximum
rotor speed. The crossover value at which the force at the
critical equals the force at the operating speed is taken as the
optimum value.

Fig. 11 is similar to Fig. 10 with the damping range varying
from 1 to 100. For the case of K = 10° 1b/in., the force de-
veloped at the maximum operating speed will be equal to the
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force developed at the critical speed for a damping coefficient
of C = 36 lb-sec/in. causing a value of Funax = 350 lb. This
damping value may be considered as an optimum and the bearing
forces induced by rotor unbalance at any speed will always be
less than or equal to Fmax. If the bearing support stiffness is
reduced to 10,000 1b/in. the rotor critical speeds will be reduced
to 3500 and 5500 rpm which is well below the idle speed of the
engine. The first bearing amplitude will be less than 2 mils for
all damping values and the second bearing amplitude will be less
than 0.5 mils. For light values of damping, the maximum bear-
ing force will occur at the second critical speed of 5500 rpm.
If the rotor speed does not fall below 8000 rpm, the maximum
bearing force for ¢ = 1 will only be approximately 20 1b as
compared to a force transmitted of 2155 1b for the case of K =
10° 1b/in.  With an optimum damping value of C' = 6.7 Ib-sec/
in. for K = 10* the maximum force transmitted will not exceed
43 1b over the entire speed range. This may be compared with
800 1b maximum transmitted force for optimum damping with
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Fig. 13 Initial transient motion of a rotor in a squeeze film bearing with
suddenly applied unbalance 0-5 cycles

K = 10%1b/in. Thus from the standpoint of steady state motion
and force transmitted due to unbalance, a lightly or undamped
low spring rate support appears to be highly desirable.

Fig. 12 represents the maximum bearing force versus bearing
stiffness for various values of damping. The dotted line repre-
sents the force transmitted at 30,000 for ¢ = 1. Note that the
reduction of the bearing support stiffness generally results in a
reduction of the bearing forces transmitted. The curves of C =
100 and 500 clearly represent excessive support damping and
should be avoided.

The use of an undamped low spring rate support system can
cause large transient excursions in the event a turbine blade is
lost. A certain level of damping is required to suppress the
transient rotor response due to acceleration, shock load, or a sudden
change of unbalance. For example, Fig. 13 represents the
transient motion of the rotor running at 28,000 rpm in a hydro-
dynamic squeeze film bearing with a bearing mounting spring
rate of 10,000 1b/in. The rotor is assumed to be initially balanced
and upon loss of the turbine blade a large rotor transient motion
is experienced causing a maximum force of 573 lb or a dynamic
transmissibility of TRD = 0.68 after !/, shaft cycle of motion.
The maximum transient displacement is 80 percent of the
squeeze film bearing clearance or over 5 mils excursion. After
20 cycles of shaft motion the maximum force is reduced to 70 1b
or a maximum dynamic transmissibility coefficient of only 0.08.
From Fig. 11 for Fm.x = 70 b and K = 10* the squeeze film
bearing is behaving as an equivalent support damping coefficient
of ¢ = 11 lb-sec/in. after the transient motion has subsided.
The basic behavior of the squeeze film bearing is nonlinear and
analysis has indicated that for certain levels of speed or unbalance,
the squeeze film bearing can actually cause greater forces to be
transmitted through the bearing than would a rigid support.
The characteristics of the nonlinear squeeze film bearing will be
examined in greater detail in Part IT.

Summary and Conclusions

1 The bearing support stiffness characteristics should not be
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Fig. 14 Transient motion of a rotor in a squeeze film bearing after 20
cycles of motion

selected only on the basis of critical speed calculations.

2 The selection of high bearing support stiffness values to
place the rotor second rigid body ecritical speed above the design
range will lead to excessive forces transmitted through the
bearings. If a high bearing support stiffness must be used then
the engine must be accurately balanced to minimize vibration
problems and ensure reasonable bearing life. Any increase in
rotor unbalance during operation such as through particle
build-up, thermal gradients, corrosion, or blade loss could cause
serious bearing problems or possible engine failure.

3 The incorporation of support damping with a high spring
rate support system is relatively ineffective in reducing the bear-
ing forces transmitted. Lower support stiffnesses, with moderate
damping is quite effective in minimizing bearing forces. For
a given support spring rate there is an optimum value of support
damping to use. Excessive amounts of damping cause the rotor
forces to increase rapidly with speed.

4 The rotor may operate at a critical speed if sufficient damp-
ing is incorporated into the support system.

5 A value of support stiffness may be selected to drop the
first two critical speeds below the idle speed so that no critical
speed problem is encountered throughout the entire speed
range.

6 From the standpoint of synchronous unbalance response
only, an undamped low stiffness rate support may be used to
minimize the rotor forces transmitted over the entire speed
range.

7 The use of low stiffness undamped springs for rolling ele-
ment rotors may lead to stability problems as reported by
Alford [1]. Cross coupling forces due to rotor internal friction
and the rotor power level may cause large nonsynchronous whirl
motion and even possible rotor failure. Thus there exists a
lower limit to the values of stiffness and damping that should
be used to insure adequate rotor stability.
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8 The linear analysis as applied to a squeeze film bearing is
only valid for small displacements. The squeeze film bearing
support which is used on a number of gas turbine designs is
highly nonlinear in its behavior and will not function under
certain ranges of unbalance and unidirectional loading.
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