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1 Introduction

Optimum Bearing and Support
Damping for Unbalance Response
and Stability of Rotating Machinery

This paper presents a rapid approximate method for calculating the optimum bearing or
support damping for-multimass flexible rotors. to minimize unbalance response and to
maximize stability in the vicinity of the rotor first critical speed. A multimass rotor is rep-
resented by an equivalent single-mass model for purposes of the analysis. The optimum
bearing damping is expressed as a function of the bearing stiffness and rotor modal stiff-
ness at the rigid bearing critical speed. Stability limits for aerodynamic cross coupling
and viscous internal rotor friction damping are also presented. Comparison of the opti-
mum damping obtained by this approximate method with that obtained by full scale lin-
earized transfer matrix methods for several rotor-bearing configurations shows good
agreement. The method has the advantage of being quickly and easily applied and can
reduce analysis time by eliminating a time consuming search for the approximate opti-
mum damping using more exact methods.

The ability to determine the opfimum bearing damping becomes

A large body of knowledge and sophisticated analytical methods
exists today for analyzing the dyhamic performar{ce of turboma-
chinery. Two of the most important problem areak are unbalance
response and stability associated with the first bending mode of the
rotor. It is, therefore, highly desirable to have an easily applied method

_to obtain an estimate of the optimum bearing damping for minimum
unbalance response and maximum stability when operating above
the first critical speed.

Several important advantages accrue from such a method. Machine

designers could tentatively select bearing configurations which will
give adequate damping without resorting to large numbers of com-
puter aided analyses during the initial design period. Also those en-
gineers called upon to correct abnormal unbalance response or sta-
‘bility problems in machines already constructed and in service, could
quickly determine whether modifications to the bearings would
present an adequate “quick fix” solution. These capabilities would
in many cases reduce the amount of time required to put a machine
back into service with a corresponding cost savings to turbomachine
manufacturers and users.
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more important as machine operating speeds increase due to lighter,
more flexible rotors and more widespread use of tilting pad and other
“antiwhirl” bearings. The lower resultant first critical speeds and the
greater destabilizing effects of seals; turbine aerodynamics, and in-
ternal friction damping necessitate that adequate bearing or support
damping be incorporated into the system. The problem is further
complicated when preloaded tilting pad bearings are used because
the damping remains fairly constant with machine speed while

stiffness increases.

An approximate method is presented whereby the optimum bearing
or support damping can be calculated as a function of the rotor and
bearing stiffness properties. It is particularly applicable to bearings
that have minimal cross-coupling effects such as tilting pad and
squeeze film bearings.

2 Optimum Bearing Damping

As a first step in-deriving an explicit expression for the optimum
bearing damping, the multimass flexible rotor is represented as an
equivalent single mass rotor for analysis in the vicinity of the first
flexible rotor critical speed (Fig. 1). This model constitutes a modal
representation, and the modal mass and stiffness of the rotor are
obtained from energy considerations [1].!

Hence, the modal mass and rotor stiffness are

I Numbers in brackets designate References at end of paper.
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Fig. 1 Modal representation of multimass flexible rotor for analysis near the
first critical speed.

M = Zm;¢;? (1)
k= Maw2 (2)

where w,, is the rigid bearing critical speed.
Then, for the rotor in flexible damped bearings undergoing forced
vibration

7+ 0w (Z — 7)) = eywleivt (3)
26102y + (Kwer?)Zy + wer 221 = 2) = 0 (4)

where it has been assumed that the only appreciable rotor damping
is obtained from the bearings, the coupling in the horizontal and
vertical directions is negligible and that bearings are essentially in-
dentical.

By assuming synchronous motion and solving for Z, in terms of Z
equations (3) and (4) are combined to give

Z+ 2werkoZ + Q2Z = ey w2eivt (5)

where

~ £
T (1 +K)? + (2f8)?

o Q[K(1+K)+(2ffx)2]
L+ K)?+ (2f8)?

Since many machines operate with K > 2, it is assumed that the
critical speed on flexible bearings does not differ greatly from that
on rigid bearings, i.e., f = 1. As the stiffness ratio, K, becomes larger
the assumption becomes less of an approximation, and it is for large
K values that the need for optimum damping becomes most critical,
Hence, the effective rotor damping may be maximized with respect
to the bearing damping by finding the value of £, which satisfies
3%./d&, = 0. Hence

&e (6)

(7

1

bem = m (8)
1+ K
(10 = 2 9)

Using these expressions the approximate rotor amplification factor

due to unbalance is given by
A=2(1+K) (10)

Equation (5) and the corresponding free, damped vibration equa-
tion have been solved exactly to determine the bearing damping which
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Fig.2 Comparison of optimum bearing damping obtained from approximate
method and exact solution of modal equations of motion

minimizes the unbalance response and which maximizes the real part
of the damped eigenvalue. A comparison of the exact solutions and
the approximate solution given by equation (9) is shown in Fig. 2. It
is seen that the approximate solution provides a very reasonable es-
timate of the optimum damping for a wide range of the stiffness ratio,
K. The expression for the maximum effective damping, equation (8),
corresponds to that obtained by Black [2] using a perturbation solu-
tion technique.

Table 2 shows the ratio of bearing stiffness for the four example
rotors considered in this study. These rotors were chosen on the basis
of their availability to the authors rather than for the large values of
K shown. However, these examples do show that the foregoing anal-
ysis is applicable to many rotors.

Fluid film bearing stiffness and damping coefficients are often
presented in nondimensional form as functions of the bearing Som-
merfield number, the nondimensionalization being

- K
K,,=—~‘;° (11)
—  Cpwe

Cp = ’;{," (12)

If the nondimensional stiffness coefficient is known at the first critical
speed, the optimum nondimensional damping coefficient is

2
B = (27) + B,
28

This value can be quickly compared with the actual nondimensional
damping coefficient to determine how effective the bearing will be
at the first critical speed.

(13)

3 Stability With Optimum Damping
Rotor bearing systems are frequently subjected to self excited in-
stability mechanisms including bearings, seals, aerodynamic effects,

A = rotor amplification factor (Z/e,) Dim
¢ = bearing clearance L
C = damping FTL !

C; = internal viscous friction damping
FTL—!

e, = modal mass unbalance eccentricity L

Q=g/mT"?

k = fundamental equivalent shaft stiffness
FL-!

K = stiffness ratio, k1/k Dim

m = total rotor mass FT2L !

M = rotor modal mass FT2L !

g = aerodynamic cross coupling FL !

W = rotor modal weight F

¢ = damping ratio, C/2m w., Dim

Z = displacement L

¢ = normalized rotor mode shape Dim
w = rotor speed T~!

w.r = rotor rigid bearing critical speed 7'~!

Subscripts

1 = bearing property

2 = support property

b = bearing

e = effective property
m = maximum value

o = optimum value

§ = support
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Rotor
Light Rotor [10]
Heavy Rotor [10]

8-stage
Compressor [12]

SSME-HPFTP [13]

Table 1 Summary of modal data for example industrial rotors
Rigid Bearing
Critical Speed Operating Speed
(RPM) (RPY)

Modal Weight
)
Above First Critical

Modal Shaftr
Stiffness

(N/cm x 10~%)

2106 5100 3.50
24761 2540 Above First Critical 10.20
3002 3821 10,000 2.80
285 16500 28,000 4.96

Table 2 Summary of optimum damping data for example industrial rotors

Rotor Bearing Bearing Optimum Support Opt. Support

Stiffness Damping Stiffness Brg. Damping Stiffness Damping

(N/cm x 10-%) (N-s/cm) Ratio, K (N-s/cm) (N/em x 107%) (N-s/cm)
Light Rotor [10] 1.04 2942 3.4 2531 Rigid Support -—
1.82 4432 5.9 3982 Rigid Support -
Heavy Rotor [10] 25.98 Not Given 29.2 10107 Rigid Support o
8-stage : 2.50 2559 10.2 6862 Rigid Support —
Compressor [12] 2,50 2559 0.36 - 0.088 528
SSME-HPFTP [13]  Rigid Bearings — 0.71 -—- 9308 325
0.876 776
Rigid Bearings — 2.02 ——— 1.751 1264

Rigid Bearings — 4.04 —— N

and internal rotor friction damping [3-9]. The analysis just presented
considered the bearings to be isotropic and to have negligible cross
coupling. Thus bearings are not considered to be a source of rotor
instability. The effects of the optimum bearing damping obtained
from such a system on the stability limits with aerodynamic cross
coupling or viscous internal friction will now be considered.

For free, damped vibrations with aerodynamic cross coupling and
optimum bearing damping, equation (5) becomes

Z+ 20erbemZ + (2 —iQ)Z =0 (14)
where &, is given by equation (8) and
2(1 + 2K)
poler 720 15
2(1 + K) ¢
With viscous internal friction damping, equation (5) becomes
Z + 20er(Eom + £)Z + (9? = 2iwerwE)Z = 0 (16)

where &; is the internal friction damping ratio.

The solution of the eigenvalues of equations (14) and (16) at the
instability threshold show the whirl frequency to be Q. The maximum
permissible aerodynamic cross coupling with optimum bearing
damping is

Wer [ 1+2K ]m
201 + K) L2(1 + K)

whereas with viscous internal friction the rotor will only be stable if
the operating speed is

< ter [1+2K]1/2[1+
T ) Fraii ol
(1+K)2L 2

4 Application to Turbomachinery

As a first example of the application of the preceding analysis,
consider the ten-stage centrifugal compressor described in reference
[10] and designated therein as the “light” rotor. The unit is nearly
symmetrical and weighs 4212 N (947 lb). The rotor is supported in
two five-pad tilting pad bearings with the following dimensions: L =

Qmax = 17)

K+ 1] -
4t
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38.9mm (1.53 in.), D = 101.6 mm (4 in.), and Cg4 = 0.1524 mm (0.006
in.). The load is acting on the pad.

Assuming Cy to be the bearing diametral clearance and the preload
to be 0.5, the radial pad clearance is Cp = 0.1016 mm (0.004 in.). If we
further assume the pad arc length to be 60 deg, the offset factor to be
0.5 and the viscosity to be 9.0 X 1073 Pa — s (1.3 X 1078 Ib-s/in.?), the
nondimensional stiffness and damping coefficients at the rigid bearing
critical speed of 5100 rpm are

K. = 5.04
K,y = 8718
C,. =1.58
Cyy =11.42

Assuming the modal mass to be one half the total rotor mass, the
stiffness coefficients are ky, = 1.04 X 10° N/cm (5.96 X 10° Ib/in.) and
kyy = 1.82 X 10° N/cm (1.04 X 10° Ib/in.) which are similar to those
used in reference [10]. Applying equation (13) the optimum nondi-
mensional damping coefficients are

Cixo = 6.52
Cyyo = 10.26

Thus the bearings produce damping values within 16 percent of the
optimum. The optimum damping values could have been found by
use of equation (9) directly by calculating the dimensional bearing
stiffness values and the effective rotor stiffness based on the modal
mass and rigid bearing critical speed. The bearing to shaft stiffness
ratios are K = 3.4 in the horizontal direction and K = 5.9 in the ver-
tical direction. The rotor will be stable from aerodynamic effects'if
the total effective aerodynamic cross coupling does not exceed 35000
N/em (20000 1b/in.). '

As a second example, consider the seven-stage centrifugal com-
pressor designated in reference [10] as the “heavy” rotor. This is a
49341 N (11093 1b) unit mounted in pressure dam journal bearings.
The rigid bearing critical speed is approximately 2540 rpm and the
modal weight is approximately 24761 N (5546 1b). Hence, the effective
shaft stiffness is approximately k = 1.779 X 108 N/cm (1.016 X 108
Ib/in.). The average vertical bearing stiffness is given in reference [10]
as kyy = 2.598 X 107 N/em (1.484 X 107 1b/in.). Hence, the stiffness
ratio is K = 29.2 and the optimum bearing damping is Cp, = 10107
N-s/cm (57715 1b-s/in.). ' i
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Fig. 3 Comparison of optimum support damping for eight-stage centrifugal
compressor obtained by approximate method and exact solution of the mul-

timass equations of motion

The damping values for these bearings was not given in the refer-
ence and insufficient data was given to calculate them, however even
if the optimum damping were present the approximate rotor ampli-
cation factor given by equation (10) is A = 60. Thus the rotor is ex-
tremely sensitive to any unbalance that will excite the first mode and
it would also require only 1926 N/cm (1100 1b/in.) effective aerody-
namic cross coupling to render the rotor unstable. With the extremely
stiff bearings the flexible bearing critical speed is very close to the rigid
bearing critical speed and even optimum bearing damping has little
effect since the bearing amplitudes are very small.

The third example considers an eight-stage centrifugal compressor
mounted in tilting pad bearings. The rotor weighs 6005 N (1350 1b)
and has a rigid bearing critical speed of 3821 rpm. The effective rotor
stiffness is 4.903 X 10° N/cm (2.8 X 10°1b/in.). In the vertical direction
the bearing stiffness and damping coefficients are Ky, = 2.5 X 106
N/em (1.428 X 108 Ib/in.) and Cy, = 2259 N-s/cm (1290 Ib-s/in.). The
vertical stiffness ratio is, therefore, K = 10.2. The optimum bearing
damping is Cy,, = 6862 N-s/cm (3920 lb-s/in.) which is over three
times the damping actually provided by the bearings.

Based upon a linearized stability analysis and actual testing, the
rotor was found to have an effective aerodynamic cross coupling of
g = 35000 N/cm (20000 1b/in.). Even with optimum damping, equa-
tion (17) shows that the rotor will be unstable if the cross coupling
exceeds 21364 N/cm (12200 1b/in.).

In order to stabilize the rotor, a parametric analysis using a flexible
damped support (squeeze film damper bearing) in series with the
tilting pad bearings was performed. The results are illustrated in Fig.
3 where the real part of the system first forward mode eigenvalue is
plotted versus support damping for several values of support stiffness.
To obtain these curves, the rotor was modeled as a six-degree-of
freedom system for analysis in the vicinity of the first mode and the
dynamical equations of motion were solved for the twelfth order
characteristic polynomial [11-12]. This polynomial was then nu-
merically solved for the system eigenvalues for each combination of
the bearing and support properties considered. It required approxi-
mately 12 computer runs to describe each curve in Fig. 3 to obtain the
optimum support damping for each support stiffness considered.
Thus the parametric stability analysis required a substantial amount
of time to prepare. It is of interest to compare the values of optimum
damping obtained from the more complex parametric analysis with
those found using the method in this paper.

Because the squeeze film damper bearings are in series with the

tilting pad bearings, the combined effective stiffness and damping
of squeeze film-tilting pad combination must be used in the optimum
damping calculations. The equations used for this are derived in the
Appendix. With a squeeze film support stiffness of 87559 N/cm (50000
Ib/in.) the effective bearing-support stiffness is 84894 N/cm (48478
1b/in.) and the optimum total effective bearing-support damping is
824 N-s/cm (471 Ib-s/in.). Using the equations in the Appendix, the
squeeze film support must have a damping of 925 N-s/cm (528 lb-
s/in.). This corresponds very closely to the optimum support damping
value of 936 N-s/cm (550 lb-s/in.) obtained from the parametric sta-
bility study. Repeating the process for other values of support stiffness
results in the dashed curve in Fig. 3 which shows very good agreement
with the parametric study over the wide range of support stiffness
considered and was obtained much more quickly. With the optimum
support damping and support stiffness of 8.76 X 10* N/cm (5 X 104
1b/in.) the maximum aerodynamic cross coupling has been increased
from 21364 to 144385 N/cm (12200-82450 1b/in.).

The final example is the Space Shuttle Main Engine—High Pres-
sure Fuel Turbopump (SSME-HPFTP). The HPFTP consists of a
three-stage centrifugal pump section and a two-stage turbine section
as shown in Fig. 4. Details of the pump configuration are given in
reference [13].

The rotating assembly is supported in flexibly mounted ball
bearings and is acted on by aerodynamic cross-coupling forces in the
turbine section. In its original configuration, little damping was
provided to the rotor from the bearings, supports, and seals.

Fig. 5 illustrates the results of a stability analysis performed on the
HPFTP considering the turbine aerodynamics to be the prime exci-

Fig. 4 Space Shuitle Main Engine—High Pressure Fuel Turbopump
(SSME—HPFTP)
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Fig. 5 Comparison of optimum ball bearing support damping for SSME-
HPFTP obtained by approximate method and transfer matrix method with ¢
= 2.63 X 10* N/cm (15000 Ib/in.)

tation. The supports were considered symmetric and isotropic. The
operating speed is 28000 rpm. Fig. 5 shows the results of varying the
total effective bearing-support damping for values of support stiffness
from 3.065 X 10° to 1.751 X 10® N/cm (1.75 X 10°-1.0 X 108 Ib/in.).
This analysis was performed by a linearized stability technique using
a transfer matrix approach [14]. As in the previous example, a large
amount of time was spent running the linearized stability program
to obtain the optimum damping values. Approximately 30 computer
runs were required to produce the map in Fig. 5.

To use the method described in this paper, the rigid bearing critical
speed was calculated to be 16500 rpm and the modal mass was found
to be 284.7 N (64.0 1b). Hence the effective rotor stiffness is 8.67 X 10°
N/cm (4.95 X 10° Ib/in.). The bearing/support stiffness ratios are K
= (.71, 2.02, and 4.04 and the corresponding optimum effective sup-
port damping values are 425, 776, and 1264 N-s/cm, respectively, (243,
433, and 722 lb-s/in.). These values are shown by the dashed curve
in Fig. 5 and agree closely with the optimum values predicted by the
linear stability analysis. The maximum permissible aerodynamic cross
coupling values at each support stiffness value with optimum damping
are 2.13 X 107, 1.31 X 10° and 8.16 X 10* N/em (1.22 X 105, 7.49 X 104
and 4.66 X 10% 1b/in.). These values are in excess of the value of 2.63
X 10* N/em (15000 lb/in.) considered in the stability analysis. A
summary of these examples is given in Tables 1 and 2.

5 Conclusions

An expression for the optimum bearing damping has been devel-
oped as a function of the bearing/rotor stiffness ratio. The bearings
were assumed to have negligible cross coupling effects as in tilting-pad
and squeeze film damper bearings. The optimum bearing damping
is easily calculated knowing only the rigid bearing critical speed and
modal weight of the rotor. This information is obtained from un-
damped critical speed calculations. The optimum damping calculation
is valid for both unbalance response at the first rotor critical speed
and first mode stability as shown by comparison with the exact so-
lution of the equations of motion. Stability limits with aerodynamic
cross coupling and viscous internal frictions damping with optimum
bearing damping are expressible as functions of the bearing/rotor
stiffness ratio. If the bearings are mounted on flexible damped sup-
ports auxiliary equations must be used to determine the support
damping necessary to give the optimum total effective bearing-sup-
port damping.

The optimum nondimensional bearing damping obtained from
hydrodynamic bearing analysis is related to the nondimensional
bearing stiffness at the critical speed only by the bearing clearance
and rotor rigid bearing critical speed. This makes it very easy to de-
termine whether the bearing design is desirable merely by using
tabular hydrodynamic bearing data.

Comparisons of the optimum damping values calculated by the
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Fig. 6 Bearing mounted on flexible, damped support

method presented in this paper to those found by the transfer matrix
method for a number of rotor systems shows good correlation. Thus,
the method is an effective tool to provide bearing-support design in-
formation quickly. Application of the method will result in time and
cost savings in many instances by eliminating time consuming analysis
with nonoptimum bearing designs.

APPENDIX

To calculate the optimum support damping for a rotor with a
damped flexible support in series with a bearing, it is necessary to
know the total effective support-bearing stiffness and damping. Fig.
6 shows a schematic of the bearing support structure.

The equations of motion are

M%; + Ci(dy — 22) + ky(x1 —x2) =0 (A.1)

Moxo + Ci(xo — 21) + Coxo + ky(xo—x1) + koxo + 0 (A.2)

Assuming solutions of the form x = Xe“! equation (A.2) is solved
for x5 in terms of x; and substituted into equation (A.1) giving
Mlil + [Cl(l - B) =t le/w])'(l + [kl(l o B) + OJC]D]XI =0

(A.3)

or

Mgy + Coxy + kex1 =0 (A.4)

which represent the total effective stiffness and damping of the
bearing-support combination. B and D are given by

B= ki(k1 + ko — mow?) + w2C1(Cy + Cv)

A5
(R1+ ko — mow?)? + wZ(C1 + Co)2 ( )
Ci(ky + ko — mow?) — ky(Cy + C»)
s |
Lty + ko = maw?)? + w2(Cy + Co)? e

To determine the optimum damping of the bearing-support com-
bination, k. is calculated neglecting the support damping Cs. This
value is used to determine the stiffness ratio, K, and hence, the total
optimum bearing-support damping. Since C, ky, and k» are constant,
the value of C giving the optimum bearing-support damping is given

by
-B; [ Bi\2 Dl]ll‘z
s Ly A7
*7 24, (A,) A (A
where
Aj= wz(cl e Cer)) (A.8)
Bl = W2CI(C1 ™= 2090) + k12 (A.g)
Dy = (k1 + ky — maw?)?
—k1C1(k1 + 2kz - 2)712(02) = wzCﬁ’ (A.lO)

The plus sign in equation (A.7) is used when B;/A, is positive. The

5



effect of C on the total effective stiffness should then be checked to
see if the effective damping is near the optimum. In some cases several
iterations are necessary to calculate the support damping that opti-
mizes the bearing-support structure since the support damping affects
the effective stiffness.

The application of these equations takes into account the lost ef-
fectiveness of the support damping when transmitted through the
bearings. If the bearing stiffness is much greater than the support
stiffness, the effective total bearing-support stiffness neglecting
support damping can be closely approximated by the support stiff-
ness. However, the support damping required to give the optimum
total effective bearing-support damping must still be calculated using
equation (A.7) to retain sufficient accuracy.

In some cases with large support stiffness, ko, the optimum effective
bearing-support damping cannot be achieved by increasing the sup-
port damping. This occurs because the support damping increases
the total effective bearing-support stiffness which decreases the
damping transmitted through the support and bearing. There is still
a value of support damping, C», that maximizes the total effective
damping transmitted to the rotor, &. In such cases, calculation of C,
in equation (A.4) for different values of C» will indicate the new op-
timum value.
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