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Effect of Residual Shaft Bow on
Unbalance Response and Balancing of a
Single Mass Flexible Rotor

Part 1: Unbalance Response

The effect of residual shaft bow on the unbalance response of a single mass rotor on rigid
supports has been examined with a theoretical analysis. The analysis determined the
amplitude, phase angle, and peak rotor response speed for various combinations of re-
sidual bow and unbalance. For most combinations the phase angle corresponding to the
peak rotor response speed was significantly different from the 90 degrees observed in the
conventional unbowed rotor. If the residual bow and unbalance were exactly out of
phase, the rotor amplitude was zero for a rotor speed equal to the square root of the ratio
of residual bow amplitude to unbalance eccentricity. The results of the study suggested a
simple method for determining the relative amplitudes of residual bow and unbalance
eccentricity based upon the motion of a timing mark on an oscilliscope screen. If the re-
sidual bow was less than the unbalance eccentricity, the timing mark moved first in the
direction of rotor rotation as the speed is increased and then moved in the opposite di-
rection at a speed less than the critical speed. In the reverse situation, the timing mark
moved opposite to the direction of rotation as the speed is increased. At some speed
above the critical, it reversed direction. Part II of this paper presents theoretical and ex-

perimental results for balancing of a single mass rotor with a residual bow.

Introduction

The purpose of this paper is to analyze the effect of residual bow
on the dynamic response of an unbalanced single mass (Jeffcott)
rotor on rigid supports. The results of this analysis are used to
suggest improvements in balancing technique for high speed rotat-
ing machinery.

In many rotor applications there can exist a residual bow in the
shaft due to various effects such as thermal distortion, gravity sag,
mechanical bow resulting from prior unbalance, or shrink fits.
Some of these are temporary while others are permanent in nature.

During the start up of hot turbomachinery, such as gas turbines,
steam turbines and water pumps in nuclear reactors, a bow can be
developed in the rotor shaft due to an asymmetric heat distribu-
tion. This may be caused by partial steam inlet conditions in a
steam turbine. The rotor must be slowly brought up to speed while
being uniformly heated to avoid inducing a large thermal bow.
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This may require several days for some of the very large steam tur-
bines.

Another problem arises in large horizontal turbines or compres-
sors which are allowed to sit for long periods of time. The gravita-
tional sag of the rotor may produce a temporary mechanical bow in
the shaft. Upon start up the bowed shaft may cause large vibra-
tional amplitudes due to the combination of residual bow and
rotor unbalance.

Longer lasting sources of residual bow arise from shrink fits and
thermal bows due to the rubbing of a shaft on a seal. The shrink fit
of the rotor to the shaft may produce a permanent mechanical bow
in the shaft. Thermal bow due to shaft rubbing was reported by
Newkirk [1]! and recently investigated by Dimarogonas [2]. If this
effect occurs below critical speed, the residual bow tends to in-
crease which in turn increases the rubbing effect. The motion is
unstable and can lead to catastrophic failure of the rotor system if
the vibration is unchecked.

Dimarogonas [2], Kikuchi [3], and Yamamoto [4] have all dis-
cussed the problem of a warped shaft due to thermal effects. As yet
however, there has been little reported information on the rotor

1 Numbers in brackets designate References at end of paper.
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amplitude and phase angle change due to residual bow. In the
practical application of balancing of turbo machinery, it is very im-
portant to understand the influence of residual shaft deflection in
order to properly balance the rotor system. Improper placement of
the balancing weight can make the unbalance worse than original
case.

It has been found that the rotor phase angle with a bowed shaft
will be considerably different than the predicted phase angle with
the normal single mass model. Discussion with several persons in
industry on phase angle measurements has indicated that because
of the peculiar phase angle data observed, they were hesitant to
print this material because they were unable to explain the phe-
nomena. Therefore one objective of this paper is to not only ex-
plain the dynamic unbalance response but also the type of phase
angle changes that may be expected with a bowed shaft.

The results and conclusions obtained for the dynamic unbalance
response and balancing of the single mass rotor may be applied to
multistage centrifugal compressors and turbines by means of
modal analysis. From the calculation of the rotor first critical
speed and mode shape, an equivalent modal mass and effective
shaft stiffness may be calculated.

Some turbo machinery, e.g., high-pressure multistage compres-
sors of barrel construction, have easy access only at the rotor ends.
Therefore, in the field, they can be balanced only in two planes.
According to Sternlicht [5], these machines should be designed to
operate below the second critical speed. Thus a single mass model
is directly applicable to this type of machine.

Part I of this paper deals with a theoretical analysis of a single
mass rotor with a bowed shaft. Part II presents theoretical and ex-
perimental results on balancing of such a rotor.

1 Dynamic Response of Bowed Rotor

1.1 Equations of Motion. A single disk is mounted at the cen-
ter of a uniform flexible shaft as shown in Fig. 1. The shaft has a
residual bow of magnitude 8, and phase angle ¢,. The mass center
of the disk is displaced a distance e, from the shaft center line
which results in a dynamic bow as the shaft rotates. Its magnitude
and phase angle are J; and ¢s, respectively. Thus the total shaft
bow is

1)

No gyroscopic effects occur since the disk always rotates in its own
plane. The shaft mass is small compared to the disk mass. Both
the shaft and disk rotate with constant angular velocity w. The
supports are taken as rigid (no spring or dampers act at the bear-
ings).

T=3,+70,
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Fig. 1 Single mass flexible rotor with bowed shaft, end and side views

D’Alembert’s principle is used to formulate the equations of mo-
tion for the rotating disk with the residual shaft bow. The position
vector P,, from the unbowed, nonrotating center line of the shaft
to the mass center, M, of the disk is

P, = -5 + e, (2)
If the cartesian coordinates of the center line are denoted by x and
y, equation (2) gives
P, =[x + e, cos (wt—¢)]i + [y + e, sin (wt—9,)]j ()

The acceleration of the mass center is
a, = [¥ — w?e, cos (wt— )i+ [V — w?e, sin (wi—¢,)]j
@)

where the dots denote differentiation with respect to time.
By D’Alembert’s principle, the sum of external forces plus exter-

Nomenclature
A = amplification factor, |Z| = §/ey, t = time,s
dim x = horizontal shaft center line dis- 3, = residual bow vector
A.r = amplification factor at rotor criti- placement 6 = residual bow, |8-|, cm (in.)
cal speed, dim y vertical shaft center line dis- 3, = nondimensional residual bow,
Amax = maximum amplification factor, placement Or/eu
dim z = complex shaft center line dis- 5. = elastic shaft deflection vector
a,, = acceleration of rotor mass center placement, x + iy ¢ = damping ratio, ¢/ccr, dim
¢ = shaft damping, N-s/cm (Ib-s/in.) Z = complex amplitude of motion ¢ = phase angle between the shaft
cer = critical damping coefficient, N-s/ (steady-state response) center line vector & and the
cm (lb-s/in.) Z = nondimensional, complex ampli- shaft reference timing mark
e, = unbalance eccentricity vector tude, Z /ey dcr = phase angle ¢ at rotor critical
e, = unbalance eccentricity, |e.|, cm Z., = nondimensional, complex ampli- speed
(in.) tude at rotor critical speed ¢max = phase angle ¢ at maximum
f = frequency ratio, w/wecr, dim Z__, = real part of Z amplitude
fmax = frequency ratio at maximum Z; imaginary part of Z ¢m = angle between mass center and
amplitude, dim v = angle between the residual bow shaft reference timing mark
= shaft spring rate, N/cm (Ib/in.) vector o, and the mass unbal- ¢r = angle between residual bow vector
m = rotor mass, N-s2/cm (Ib-s2/in.) N ance vector ey 8, and the shaft reference tim-
N = rotor speed, rpm 6 = shaft center line deflection vector ing mark
P,. = position vector of rotor mass cen- 6 = shaft center line deflection, |4], w = shaft angular velocity, rad/s
ter cm (in.) wer = rotor critical speed, vk/m, rad/s
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nally applied forces must vanish. The inertia force acting on the
disk is

—ma,,
An externally applied (so far as the disk is concerned) elastic re-
storing force

- k‘é’s

acts to return the shaft center line to the residual bowed position
due to the shaft stiffness. Also a damping force

—cb
acts at the disk to return the shaft center line to the unbowed,
nonrotating position. The equation of motion is

ma, + b + k8, =0 (5)
or in terms of x and y from equations (1) and (4)

m{x — wle, cos (wt —o,)} + cx
+ k{x -5, cos (wt —,)} =0 (6)

mly — w?e, sin (wt — ¢,)} + cy
+k{y — 5, sin (wt —¢,)} =0 (7)

These two second order differential equations describe the dynam-
ic response of the shaft center line.

For convenience, the shaft center line position z in complex form
is defined as

Z=x +1iy

The result of multiplying equation (7) by i and adding it to equa-
tion (6) is

miE — wle et @t-oml 4 cz + kfz—6,e1twt-0,0} = o
1.2 Steady State Unbalance Response. Solving for z
mi + cz + kz = mwle,et0n) 4 k5 i@ (g)
For constant angular velocity, assume a solution of the form
z=Ze'vt
where Z is the complex amplitude of motion. The result is

mwle e m + ko e-i0r ©)

Z = -
-mw’ +icw +k

This describes the rotor amplitude of motion of steady-state circu-
lar synchronous precession.

The dynamic response of the residually bowed rotor can be more
easily examined with the introduction of dimensionless parame-
ters. Let the critical speed, w.,, of the undamped rotor (¢ — 0) be
given by the well known relation

2 _ %k

w
cr m
and the critical damping, c.,, be given by

Cor = 2MW,,

The dimensionless frequency ratio, f, and damping ratio, £, can be
defined as

w
f=7
cr
C
=
CCT

For these variables, the complex dimensionless rotor amplitude is

— gre'“‘r +f26’i°m

S ST 10

where
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z-Z
eu
5, =
eu

The complex amplification factor, Z, gives the amplitude and
phase angle of the dynamic response of the shaft center line due to
residual shaft bow and mass unbalance for steady state circular
synchronous precession.

The full solution for z is

z g,e“‘"t""r) +f2ei(wt-om>

N T—77 + 27 (11)
Equation (10) is of greater interest.
1.3 Rotor Amplification Factor and Phase Angles. For

convenience, let v be the angle by which the residual bow vector 3,
leads the mass unbalance vector e,

Y =9¢,— ¢,
Then equation (10) becomes

5, +1° i

ST 12

N|

Without loss of generality the shaft reference mark can be taken in
phase with the mass unbalance vector or ¢,, = 0 and ¢, = v.

= gre"" +f2

This expression shows that the two most important variables for
the residual bow are the ratio of residual bow amplitude to mass

unbalance, §,, and the phase angle v.
The complex rotor amplification factor is related to the shaft
amplitude of motion, §, and phase angle, ¢, by

Z = Ae"i®

where A is the amplification factor (4 = 6/e,). Separating Z into
real and imaginary components

Z =2, +iZ,
Equation (13) gives

7 _ (8, cos y +fH(1 - 7?) - 2¢/5, siny
T (1 - 727 + @&F)

7 _ 0, siny(l —fY +2&(, cos y +72)
i T -7V + Qi)

The shaft amplification factor and phase angle are given by

A=|Z| =VZ? +72 (16)

amn

(14)

(15)

Curves showing the variation of A and ¢ with speed for various
values of residual bow, phase angle, and damping are given in Sec-
tion 2.

1.4 Critical Speed and Maximum Rotor Amplification Fac-
tor. At the critical speed, the complex amplification factor is

= 5.e7i7 +1
Z”’:r—Z{i—

Equations (14) and (15) reduce to

(18)

- _ 0,siny
Z,__—26
Z,=-0rcosy+1

2¢

and the amplification factor, A, and phase angle, ¢.,, are

APRIL 1976 / 173



A, = —2—1-5 JG, cosy + 12 + (B, siny)?  (19)
B,cosy +1
¢,, = tan™! (e Ak S (20)

5, siny

For an unbowed rotor the critical amplification factor reduces to

the familiar value

Acr = %a
The phase angle for the unbowed rotor is 90 deg as the denomina-
tor of equation (20) vanishes.

If the rotor has some residual bow, 8, does not vanish. The criti-
cal speed phase angle is 90 deg only when the residual bow vector
is in phase with the mass unbalance vector (y = 0 deg) or exactly
out of phase (y = 180 deg). For example, when the bow phase angle
is 90 deg

5, — 0

Acrzé V1 +gr2 (21)
bep = tan"t () (22)

r

Even a relatively small residual bow, 5, = 0.5, produces a 116.5 deg
phase angle at the critical speed rather than the normal 90 deg
phase for an unbowed rotor.

It is also of interest to compute the frequency ratio, fiayx, at
which the amplification factor has a maximum or minimum. Eval-
uating

an _
dF ~—
from equations {14), (15), and (16) and solving for f gives

RESPONSE - ZERO WARP
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.00 050 100 1,50 2,00 2.50  3.00
FREQUENCY RATIO (W/WCR)
Fig. 2 Response curves with zero residual warp for various damping ra-
tios
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5,2-1 = JE2-12 —4(-1 + 282 -5, cos y)
(6, cos y + 5,2 — 2£%5 2)

2(-1 + 28 -5, cos y) (23)

The maximum (or minimum) amplification factor may occur at
two different frequencies. For example consider §, = 0.5, the two
frequencies given by equation (23) are 0.0 and 1.414. This is the
critically damped case where fmax = 1.414 is a minimum. If the
damping ratio is £ = 0.3, the two frequencies are 0.740 and 1.414
which are a maximum and minimum, respectively. These results
are shown in detail in Section 2.
Equation (16) may also be written as

A /6, cos y + ) + (5, sin y)?

. : (24)
V(1= f2? + (2¢f)?
Note that if y is 180 deg this expression reduces to
2 T
Ae— T =0 (25)

VA= + @)

Clearly, the amplitude is zero when f = \/5_, independent of the
damping ratio.

2 Dynamic Unbalance Response for the Bowed
Shaft-Amplitude and Phase Angle

2.1 Rotor Response With No Residual Bow. The dynamic
unbalance response and phase angles for the single mass Jeffcott
rotor on rigid supports with a bowed shaft is given by equations
(16) and (17). In all response curves that follow, the amplitude
ratio is made dimensionless with respect to the shaft unbalance ec-
centricity e,. The first set of curves generated are shown in Figs. 2
and 3 which correspond to the rotor amplitudes and phase angles
of the single mass rotor with no residual shaft bow for values of
damping ratio varying from 0.1 to 4.0. The value of 0.5 represents
critical damping in which the critical speed is not excited. From
the observation of the amplitude versus speed curves, it can be
seen that as the damping is increased the response changes signifi-
cantly. For damping ratios above 0.5, the maximum amplitude of
the single mass rotor without shaft bow occurs at frequency ratio
above 1.0. It is of interest to observe that when the shaft bow is in-
troduced this will not be the case.

Fig. 3 represents the rotor phase angle versus speed ratio for
various values of damping. The results shown in Figs. 2 and 3 on
rotor amplitude and phase angle are well known and have been
previously reported. The original equations describing the rotor
unbalance and phase angle change were first presented by H. H.
Jeffcott [6] in 1919 and the curves for rotor amplitude and phase
angle have been shown by Thomson [7], Myklestad [8], and others
[9, 10].

For very low values of damping the rotor phase angle below the
critical speed will be approximately 0 deg. This means that the
rotor mass center is in line with the deflection of the rotor. From
Fig. 3 it is obvious that regardless of the damping value, the phase
angle will be 90 deg at the critical speed (f = 1). For a lightly
damped rotor the phase angle will change to almost 180 deg when
the critical speed is exceeded. Numerous people have used the 90
deg phase angle shift as an indication that they are observing a
critical speed response. It is important to note that the phase angle
change at the critical speed with a bowed shaft will not necessarily
correspond to 90 deg.

Table 1 represents the critical and maximum values of amplifi-
cation factors and phase angles for various damping ratios. Note
that for the case of low damping (¢ = 0.10) where the rotor critical
amplification factor A, = 5, the maximum amplitude Anax is only
0.5 percent larger than the critical amplification factor. Further-
more, it occurs at a speed of only 1 percent higher than the und-
amped critical speed. However, the corresponding phase angle at

Transactions of the ASME



PHASE ANGLE - ZERC WARP

'.00 240.00 2?0.00 320.00

(DEGREES)

120.00 l?[]. 0o 200

PHASE ANGLE - PHI

BlIJ. 00

40.00

00

.00 0.50 1,00 1,50 2,00  2.50  3.00
FREQUENCY RATIO (W/WCR)
Fig. 3 Phase angle curves with zero residual warp for various damping
ratios

maximum amplitude is not 90 deg but 96 deg, a 6 deg phase shift
from ¢, This can have an important effect on balancing in field
use when the amplitude and phase angle method of balancing at
the critical speed is used. The mass center, therefore is not leading
the amplitude vector by 90 deg as is commonly assumed but is
leading by the values given in Table 1. As damping on the rotor in-
creases, this phase angle discrepancy between ¢, and ¢nax also in-
creases up to ¢max = 125 deg for critical damping (¢ = 0.5).

For a heavily damped rotor, with an amplification factor of ap-
proximately 2, the frequency at which the maximum amplitude oc-
curs may be as great as 10 percent above f = 1.0. Above critical
damping (¢ > 0.5) the rotor amplitude continues to increase with
speed and the values of Apmax and ¢may will approach asmptotically
the values of 1 and 180 deg respectively as f — «.

2.2 Rotor Response With Small Residual Bow —§, = 0.5. In
the set of amplitude and phase angle curves represented by Figs.
4-7, the shaft bow was assumed to be equal to one half of the rotor
unbalance eccentricity (5, = 0.5). Fig. 4 represents rotor response
curves for ¢, = 90 deg (unbalance eccentricity vector leading the
residual bow vector by 90 deg). At low speeds, considerably below
the rotor critical speed, the elastic deflection of the shaft may be
considered negligible. If noncontacting proximity probes were
placed adjacent to the shaft in the vicinity of the disk, then the
shaft amplitude at low speed would correspond to the residual bow
of the shaft. In Fig. 4 this would represent the dimensionless am-
plitude of 0.5 as shown for speeds less than 10 percent of the criti-
cal speed. The amplitude at zero frequency for the straight shaft
as recorded by the noncontracting probes would be 0. Critical
damping occurs at £ = 0.75. The effect of excessive damping can
easily be seen from the damping ratio £ = 4.0 curve. The rotor am-
plitude diminishes and reaches a minimum at the frequency of ap-
proximately 0.7. After that the amplitude increases until it reaches
the asymptotic value of 1. The amplitude value of 1 as f — =
implies that the mass center lies along the axis of rotation of the
rotor. The maximum amplitude ratio is 5.6 (for £ = 0.1). For the
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Table 1 Critical and maximum values of
amplification factors and phase angles for
various damping ratios—zero shaft warp (5, = 0)

5,.=0
E ACr Amax ocr ¢mﬂx fma)(
.10 5.000- 5.025 90.00 95.77 1.0102
.5 3.333 3.371 90.00 98.73 1.0233
.20 2.500 2.552 90.00 101.78 1.0426
.30 1.667 1.747 90.00 108.33 1.1043
.40 1.250 1.364 90.00 115.88 1.2127
.50 1.000 1,155 90.00 125.26 1.4142
.75 667 1.000 90.00 180.00 ®
1.00 .500 1.000 90.00 180.00 -
4.00 Lz 1.000 90.00 180.00 -
RESPONSE - WARPED SHAFT
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Fig. 4 Response curves with §, = 0.5, ¢, = 90 deg for various damping
ratios

zero warp case, the maximum amplitude ratio was approximately
5.0 (again for £ = 0.1). In fact, the response curves for §, = 0.5 and
¢r = 90 deg are very similar to the classical response curves for the
zero warp case. The only major difference is that all curves start at
a value of 0.5 for the 6, = 0.5 and ¢, = 90 deg case whereas the re-
sponse curves for zero warp start at zero.

Fig. 5 shows the phase angle curves for the 5, = 0.5, ¢, = 90 deg
case. It is clear that while the corresponding response curves are
very similar to the zero warp case, the phase angle curves are very
different especially in the region between f = 0 and f = 1. The
phase angle is 90 deg for f = 0 as expected since ¢, = 90 deg. How-
ever, for damping ratios between ¢ = 0.1 and ¢ = 0.5, the phase
angle decreases before it increases to a value of ¢, = 116.56 deg at
f = 1. For the over damped cases (¢ = 1.0, 4.0), the phas: angle in-

APRIL 1976 / 175



WARPED SHAFT
DELBAR= .50

PHASE ANGLE -

PHIM= 0.00
PHIR= $0.00

100.00 120.00 140.00 160.00 180.00 200.00

®
uw
w
&S
a8
=
p =y
a N
1
- 40—
[T}
&g
uJ
(72}
@
I
oo
o
o
el
Q
o
o
w
8
=] T T T T T
~0.00 0.50 1,00 1.50 2.90 2.50 3.00
FREQUENCY RATIO (W/WCR)
Fig. 5 Phase angle curves with 3, = 0.5, ¢, = 90 deg for various damping
ratios
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Fig. 6 Response curves with 5, = 0.5, ¢, = 180 deg for various damping
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Fig. 7 Phase angle curves with 5, = 0.5, ¢, = 180 deg for various damp-
ing ratios

creases before it decreases to ¢.,. This does not occur for zero warp
where the phase angle increases steadily from ¢ = 0 to ¢ = 90
deg. This is normally the way the phase angle is thought to behave.
As seen here, this is not always the case. Also, note that ¢. =
116.56 deg for all damping values. As f — «, all phase angle curves
approach 180 deg as in the zero warp case.

Figs. 6 and 7 represent the rotor response and phase angle
curves for 8, = 0.5 and ¢, = 180 deg (unbalance eccentricity vector
leading the residual bow by 180 deg). From the response curve
(Fig. 6), the maximum amplitude is 2.6 (for £ = 0.1), considerably
lower than any case seen thus far. This is intuitively obvious since
the unbalance counteracts the residual warp thus reducing the am-
plitude ratio for all damping ratios. The rotor is balanced at a fre-
quency ratio equal to the square root of 3, (f = 0.7071).

From Fig. 7, an abrupt 180 deg phase shift occurs at f = 0.7071
for all damping ratios. Fig. 8 shows the vector diagrams portraying
this 180 deg shift. For very slow speeds, the shaft center line dis-
placement .vector 8 leads the unbalance vector e, by 180 deg (see
Fig. 8-1). As the speed increases, the unbalance tends to straighten
the residual warp thus decreasing the magnitude of the displace-
ment vector 8. At the same time, the phase angle increases slightly
(Fig. 8-2). At a frequency ratio slightly less than f = 0.7071, the
magnitude of 8 is very small while ¢ is approximately 195 deg (Fig.
8-3). When f = 0.7071, the unbalance has completely straightened
the shaft. Now 8 = 0 and the phase angle is undefined. At a fre-
quency ratio slightly above f = 0.7071, the magnitude of ¥ is very
small but the direction has changed by 180 deg. Now the phase
angle is approximately 15 deg (Fig. 8-4). For frequency ratios
above f = 0.7071, the phase angle curves behave similarly to the
standard phase plots for zero warp.

Fig. 9 shows how the response curves change for one specific
value of damping (¢ = 0.3) as ¢, changes. All curves are for 8, = 0.5.
As ¢, increases from 90 deg to 180 deg, the maximum amplitude
ratio decreases from about 1.9 to about 1.2. At f = 0.7071 (square
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Fig. 8 Vector diagrams showing the 180 deg phase shift at f= 0.7071 for
6,= 0.5, ¢, = 180 deg

root of §,), the amplitude decreases to zero as ¢, — 180 deg.

Fig. 10 shows the corresponding phase angle plots (5, = 0.5, £ =
0.3). It is clear that the abrupt 180 deg phase shift for ¢, = 180 deg
is the limiting case. For ¢, = 175 deg, the phase angle curve is con-
tinuous across f = 0.7071 but very close to approaching a 180 deg
phase shift at f = 0.7071.

Table 2 represents the critical and maximum values of amplifi-
cation factors and phase angles for 5, = 0.5 and ¢, = 180 deg. For £
= 0.1, ¢or = 90 deg and ¢max = 106.87 deg (an increase of 16.87
deg). For zero shaft warp the phase angle shift was 6 deg. Thus, a
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Fig. 9 Response curves with §, = 0.5, £ = 0.3 for various ¢, values
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Fig. 10 Phase angle curves with 5, = 0.5, £ = 0.3 for various ¢, values

shaft warp equal to % the unbalance eccentricity and 180 deg out
of phase with the unbalance eccentricity tends to increase the
phase angle shift from ¢.; to dmax. For £ = 0.4, the phase angle
shifts about 60 deg from 90 deg to 150 deg.

2.3 Rotor Response With Large Residual Bow —5, = 2.0. In
the set of amplitude and phase angle curves represented by Figs.
11-13, the shaft bow is twice the rotor unbalance eccentricity (3, =
2.0). Since 5, has been increased, a corresponding increase in am-
plitude ratio should be expected. This may be seen to be true from
Fig. 11 which represents the response curves for §, = 2.0 and ¢, =
180 deg. The maximum amplitude ratio is 5.22 compared to 2.61
for the 5, = 0.5, ¢, = 180 deg case. The rotor is balanced at a fre-
quency ratio of 1.414 (square root of §, = 2.0).

Table 2 Critical and maximum values of
amplification factors and phase angles for
various damping ratios (5. = 0.5, ¢. = 180 deg)

§.=.5 ¢, = 180.0°
3 Acr Anax ber $max Fnax
.10 2.500 2.611 90.00 106.87 1.0308
W5 1.667 1.831 90.00 114.77 1.0716
.20 1.250 |.466 90.00 122.21 1.1339
.30 .833 1.146 90.00 136.00 1.3578
.40 .625 1.030 90.00 150.12 1.9148
.50 .500 1.000 90.00 180.00 ©
75 .333 1.000 90.00 180.00 ®
1.00 250 1.000 90.00 180.00 ®
4.00 .063 1.000 90.00 180.00 ©
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Fig. 11 Response curves with §, = 2.0, ¢, = 180 deg for various damping
ratios

Fig. 12 which represents the phase angle curves for 5, = 2.0 and
¢r = 180 deg, indicates an abrupt 180 deg phase shift at f = 1.414.
This shift occurs for the same reason that the 180 deg shift occured
for ¢, = 180 deg and 3, = 0.5. Note that for frequency ratios be-
tween f = 0 and f = 1.414, the phase angle curves look very similar
to the conventional phase plots for zero warp (see Fig. 3) except
that they are all displaced by 180 deg. For frequency ratios above f
= 1.414, the phase plots also behave conventionally since they ap-
proach 180 deg as f — «. :

From Table 3, which compares the critical and maximum ampli-
fication factors and phase angles for 5, = 2.0 and ¢, = 180 deg, ¢cr
= 270 deg. For a damping ratio of 0.1, ¢, = 270 deg while the
phase angle at maximum amplification decreased t0 ¢pmax = 253.13
deg (a 16.87 deg decrease). Comparison of Table 2 for 5, = 0.5
shows that the magnitude of the phase shifts are the same for all
damping ratios. When 8, = 2.0, the phase at maximum amplitude
decreased from ¢, while for 8, = 0.5, ¢max increased from ¢.

Fig. 13 represents phase angle plots for 5, = 2.0 and ¢, = 135
deg. Note that, for frequency ratios above f = 1.0, the phase angle
curves for small damping ratios increase to values above 180 deg
before they approach 180 deg as f — «. In fact, at f = 1.0, ¢, = 195
deg. These phase plots are very different compared with the con-
ventional phase angle curves for zero warp (Fig. 3).

2.4 Rotor Response With the Residual Bow Exactly Equal
to the Unbalance Eccentricity—5, = 1.0. In the set of ampli-
tude and phase angle curves represented by Figs. 14 and 15, the
shaft bow is exactly equal to the rotor unbalance eccentricity.

Fig. 14 represents the rotor response curves for ¢, = 0 deg (in
phase response). For low speeds, considerably below the rotor criti-
cal speed, the elastic deflection of the shaft is negligible and the
rotor amplitude corresponds to the residual bow of the shaft. From
Fig. 14, for f = 0, the amplitude ratio equals 1.0. Note that critical
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Fig. 12 Phase angle curves with 5, = 2.0, ¢, = 180 deg for various damp-
ing ratios

damping is £ = 1.0 and this curve is a straight line with amplitude
ratio of 1.0. For all damping ratios, the-amplitude ratio approaches
1.0 as f — «. This implies that the mass center lies along the axis
of rotation which has been true in all previous discussed cases. The
maximum amplitude ratio is 10.0 for £ = 0.1. This is about twice
the value for the zero warp case. Since the residual bow is in-phase
with the unbalance eccentricity, both effects combine to increase
the response.

Table 4 represents critical and maximum values of amplification
factors and phase angles for 5, = 1.0 and ¢, = 0 deg. Note that for
all damping ratios Acr = Amax and ¢cr = @max. In fact, this is true
for all ¢, values with 8, = 1.0.

Table 3 Critical and maximum values of
amplification factors and phase angles for
various damping ratios (5, = 2.0, ¢. = 180 deg)

Sr = 2.00 ¢, = 180.0°
¢ AC!‘ Amax ¢CI’ omax fmax
.10 5.000 5.222 270.00 253.13 .9701
.15 3.333 3.662 270.00 245.23 9332
.20 2.500 2.932 270.00 237.79 8814
.30 1.667 2.291 270.00 224.00 7365
.40 1.250 2.059 270.00 209.88 5222
.50 1.000 2.000 270.00 180.00 0.0
.75 .667 2.000 270.00 180.00 0.0
1.00 .500 2.000 270.00 180.00 0.0
4.00 .125 2.000 270.00 180.00 0.0
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Fig. 15 represents the rotor response curves for . = 1.0 and ¢, =
180 deg (out of phase response). Since the unbalance eccentricity
equals the residual bow (5, = 1.0) and leads the residual bow by
180 deg (¢, = 180 deg), the two unbalances cancel each other. This
is indeed the case as can be seen from Fig. 15. The amplitude ratio
has a maximum value of 1.0 at f = 0.0 and as f — « for all damping
ratios. The amplitude ratio is zero at f = 1.0 (square root of §, =
1.0). These response curves represent the balance rotor.

For more amplitude and phase plots considering different ¢,
values than shown here, see Gunter, Nicholas, and Allaire [10].

3 Discussion and Conclusions—Part 1

It can be seen from the examination of the various rotor ampli-
tude and phase plots presented for the different combinations of
residual shaft bow and rotor unbalance that the dynamical re-
sponse is not the same as that encountered with the conventional
unbowed shaft. The effect of the residual bow causes a consider-
able difference in the rotor amplitude and phase angle relation-
ships that would normally be expected with the unbowed shaft.

One important difference is that the rotor phase angle change
from zero speed to the speed at which the maximum amplitude oc-
curs is usually not 90 deg. Many people have used the 90 deg phase
shift method at the critical speed as a means of determining where
to place a balance weight. With a bowed shaft, this method may be
considerably in error.

If the shaft bow is 180 deg out of phase with the disk unbalance,
there will always be a speed at which the rotor amplitude will go to
zero (equal to v/5,). Whenever the amplitude goes to zero, an
abrupt 180 deg phase shift occurs at f = v/3,. This shift is due to
the change in direction of the shaft center-line deflection vector 3.

Fig. 9 indicates that a very distinct minimum occurs in the am-
plitude plots for 5, “almost” out of phase with e, (i.e., ¢, = 180
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deg + 40 deg). Thus the relative size of the residual bow may be
determined from examination of the response curves. If the rotor
amplitude goes through a minimum below the critical speed, the
residual bow is smaller than the mass unbalance. Conversely, if the
rotor amplitude goes through a minimum above the critical speed,
the residual bow is larger than the mass unbalance.

In all cases considered, the maximum amplitude occurs at a fre-
quency above or below f = 1.0 except for the 3, = 1.0 case. For 5, =
1.0 there are no phase shifts (¢.r = ¢max) and the maximum ampli-
tude occurs at f = 1.0. For §, = 0.5, the maximum amplitude occurs
at a frequency above f = 1.0 and the phase angle at maximum am-
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plitude increases from the ¢, value. On the other hand, for 8, =
2.0, the maximum amplitude occurs at a frequency below f = 1.0
and the phase angle at maximum amplitude decreases from the ¢,
value.

Fig. 5 indicates that for low damping ratios the phase angle de-
creases for frequency ratios between f = 0 and f = 0.7. This does
not occur for the zero warp case. Fig. 13 shows that for frequency
ratios above f = 1.0, the phase angle increases to values above 180
deg before they approach 180 deg as f — «. Again, this does not
occur for the zero warp case. Fig. 16 shows how these phase angle
changes may be observed on an oscilloscope. As the rotor ro-
tates, the maximum amplitude vector is traced on the screen.
When the reference timing mark on the disk lines up with the
phase reference probe, a timing dot lights up on the screen at the
location of 8 (see Fig. 16-1). For the zero warp case the timing
mark or dot moves opposite to the direction of rotation as f in-
creases (Fig. 16-2). For §, = 0.5 and ¢, = 90 deg, the timing mark
initially moves in the direction of rotation as f increases for speeds
below f = 0.6 (see Fig. 16-3). Fig. 16-4 shows the timing mark
moving opposite the direction of rotation as f increases until
slightly above the critical speed where it changes direction at f =
1.1.

Fig. 16 is for the special case of ¢, = 0 (reference timing mark in
line with the unbalance eccentricity). However, these results may
be applied in general. When the shaft is perfectly straight, the tim-
ing mark moves opposite to the direction of rotation as f increases.
Furthermore, if the shaft has a residual bow and the damping is
less than the critical value, the following conclusions hold:

1 If the residual warp is less than the unbalance, the timing
mark will first move in the direction of rotation as the speed is in-
creased and then switch direction at a speed less than the critical
speed.

2 If the residual warp is greater than the unbalance, the timing
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mark first moves opposite to the direction of rotation as the speed
is increased. At some speed above the critical speed, the timing
mark will reverse directions and begin moving in the direction of
rotation for increasing speeds. Thus the relative amplitudes of the
residual warp and mass unbalance may be determined simply by
an observation of the direction of timing mark movement on an os-
cilloscope.

In an actual machine, rotor bow may be caused by many effects
such as shrink fit of wheels and spacers and thermal bows due to
localized rubbing or thermal gradients. Quite often the thermal
bow is induced into the rotor at an operating condition due to the
local rubbing of a seal. When this occurs there is usually an associ-
ated phase angle shift. Therefore a very good way to detect a ther-
mal bow occuring during operation is by observation of the phase
angle change during running. If the phase angle changes slowly
with time while operating at a constant speed it may be due to a
thermal bow being induced into the shaft by means of a localized
rub.

By examining the response curves presented here, insight into
balancing a rotor with a residual bow may be obtained. Details of
balancing a bowed rotor are discussed in Part IL.
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Effect of Residual Shaft Bow on
Unbalance Response and Balancing
of a Single Mass Flexible Rotor

Part Il: Balancing

Three methods of balancing a rotor with a residual shaft bow were presented. Method I
balanced the total shaft amplitude to zero at the balance speed. Method II balanced the
elastic deflection to zero at the balance speed leaving the residual bow amplitude. Meth-
od III balanced the total shaft amplitude to zero at the critical speed without actually
operating the rotor at the critical. After balancing by Method I, a large amplitude re-
mained near the critical. Method II balanced the rotor to the residual bow amplitude at
all speeds except near the critical where the amplitude is slightly larger than the residu-
al amplitude. The optimum balance resulted from balancing by Method III. In this case,
the amplitude was less than or equal to the residual bow amplitude for all speeds except
at the critical where the amplitude was zero. Method 111 required that the critical speed
be known prior to balancing. For all three balancing methods, the unbalance influence
coefficient must be determined. Two procedures for determining this coefficient were
discussed. One was the familiar trial weight influence coefficient method and the other
was the direct method which does not require trial weights. Part I of this paper discussed
the effect of shaft bow on unbalance response.

Introduction

Vibration levels in rotating machinery are usually affected by
both shaft flexibility and residual bow. Bishop [1]! gave an ele-
mentary explanation of the difference between balancing for mass
unbalance and for residual bow. It was shown that an initially bent
rotor without mass unbalance could be balanced so that zero vibra-
tion resulted at the critical speed.

A general modal method for balancing a flexible shaft with both
mass unbalance and residual shaft bow has been discussed by
Bishop and Gladwell [2] and applied to a uniform shaft. Parkin-
son, Jackson, and Bishop [3] theoretically showed that the opti-
mum balance weight should be chosen so that the vector sum of
unbalance eccentricity, residual bow, and balance eccentricity be
zero. In the second part of this paper [4], they demonstrated exper-

I Numbers in brackets designate References at end of paper.

Contributed by the Gas Turbine Division and presented at the Gas Tur-
bine Conference, Houston, Texas, March 2-6, 1975, of THE AMERICAN
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received at
ASME Headquarters December 2, 1974. Paper No. 75-GT-49.
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imentally that a shaft with residual bow but no mass unbalance
could be balanced to nearly zero vibration at the critical speed.

The balancing of industrial rotors is carried out primarily by the
influence coefficient method [5]. Refinements such as applying
least squares error criteria [6], taking into account shaft flexibility
[7, 8,9, 10] and discussion of the effect of rigid body balancing [11,
12] have emerged in recent years. Wilcox [13] discusses the balanc-
ing of a bowed uniform shaft. However, no study of the effect of re-
sidual shaft bow on the influence coefficient method for flexible
rotors has been carried out.

It is usually not possible to balance a rotor with the influence
coefficient method at a critical speed [14] due to the large ampli-
tudes of vibration and difficulties of maintaining constant operat-
ing speed there. In spite of this, the optimum balancing speed is
the critical speed. Thus it is desirable to develop a method which
would allow balancing at an off critical speed resulting in optimum
balancing at the critical speed. If a change in unbalance occurs due
to erosion or other factors, the vibration level at an operating
speed near a critical will be minimized.

Although the analysis presented here is for a single mass Jeffcott
type rotor, the results may be extended to a multimass rotor oper-
ating below the second critical speed. The simple model provides
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an approximate balancing procedure which may utilize the first
critical speed obtained from the widely available critical speed
programs.

Part I of this paper discussed the theoretical unbalance response
analysis of a single mass rotor with a residual shaft bow. Part II is
concerned with a discussion of the balancing of this rotor.

4 Balancing a Single Mass Rotor With a Bowed Shaft

4.1 Theoretical Development. The balancing of a flexible
rotor with unbalance plus residual bow is normally carried out by
the influence coefficient method [5]. Total rotor response may be
considered as composed of the sum of the responses due to disk
unbalance and shaft bow as follows,

A

Z = 0,6, + a,b, (26)

where ay and «, are the complex influence coefficients for the disk
unbalance and shaft residual bow, respectively. Z is the complex
amplitude of motion. The values &, and , are also complex (unbal-
ance and residual bow, respectively). Both of the influence coeffi-
cients are usually evaluated experimentally for a particular rotor
but equation (9) gives the values associated with the single mass
rotor analyzed in Section I as

2

mw
%= e ¥ icw (@)
PP, S— (28)

kB — mw + icw

Note that both influence coefficients vary with the rotor speed at
which they are evaluated. Three balancing procedures are illus-
trated here by considering their effect on the response of the single
mass model. The three balancing procedures are

I Balancing the total shaft deflection to zero at the balance
speed.

II Balancing to minimize the elastic shaft deflection at the bal-
ance speed.

IIT Balancing the total shaft deflection to zero at the critical
speed without actually operating at the critical.

Method I seems to be suggested by Figs. 6 and 11 where the total
shaft deflection is zero for a speed below and above the critical
speed respectively. These two cases clearly show that large ampli-

tudes remain near the critical speed indicating that Method I is.

not the optimum balancing procedure.

With this knowledge, Method II is suggested. In this case, the
elastic deflection is brought to zero at the balance speed leaving
the residual displacement.

Examination of Fig. 15 suggests that if the total shaft deflection
is brought to zero at the critical then the rotor is balanced at all
speeds (i.e., the response is less than or equal to the residual de-
flection at all speeds). This may be accomplished by Method I if
the balance speed ws.is equal to the critical speed w... However,

Parkinson, et al. [3] shows how this may be done at any balance
speed. This is Method III and appears to be the optimum balance.
4.2 Discussion of Balancing Methods.
Method I. Consider Z; as the complex amplitude of motion at
the balance speed w;, before balancing. From equation (26)

Zi = Quey + aré'r

This may be rewritten as

Z, = a,(6, + 2£8) (29)
au
Let the equivalent unbalance eccentricity &,’ be
o) =&, + 25, (30)
all
Thus
A
& == (31)
u 04,4
Choose the balance eccentricity &, (complex) such that
é, =—¢,/ (32)
Or
Z
gy =—=1 33
y= ot (33)

Note that Z; may be determined experimentally by running at the
balance speed ws. Also, &, may be calculated by one of two meth-
ods discussed in Section 4.3. With these two values known, the bal-
ance eccentricity may be determined from equation (33). The bal-
ance weight is determined by

(34)

where W is the weight in newtons (pounds) of the rotor. The loca-
tion of the balance weight is given by the angle of &,. Let Z5 be the
complex amplitude of motion at w, after the balancing weight
given by equation (34) has been added. Thus

Uy=1¢&| xW N-cm (oz-in.)

Z, = a,(6,+ &,) + a,8, (35)

Substituting equations (30) and (32) into equation (35) yields

ZZ = au(éu - éu - grsr) + a'rg‘r
all
Or
22 = 0

Thus, the total shaft deflection is zero at w, after balancing. This is
balancing procedure 1.

Method II. Return to equation (26) with Z; as the complex am-
plitude of motion at w, before balancing

Zy = auéu + argr

If the shaft stiffness, k, is large compared to the amplitude of the
mass and damping terms in equation (28), the residual bow influ-

Nomenclature
¢ = shaft dampling, N-s/cm (lb-s/in.) U; = trial weight, N-cm (0z-in.) 3__: = residual bow, [3], cm (in.)
e, = unbalance eccentricity vector W = rotor weight, N (1b) 6 = shaft center-line deflection vector
&, = complex unbalance eccentricity Z = complex shaft amplitude ¢ = phase angle between the shaft cen-

e, = unbalance eccentricity, |e.|, cm Z; = complex shaft amplitude due to the
addition of a trial weight

(in.)
&,’ = complex equivalent unbalance ec- 7
centricity °r
&, = complex balance eccentricity
2, = complex trial weight eccentricity
f = frequency ratio, w/w¢r, dim
fer = critical frequency ratio, dim

= complex shaft amplitude measured
at the critical speed

ar = complex shaft residual bow influ-
ence coefficient, dim

a, = complex unbalance influence coef-

ter-line vector & and the shaft
reference timing mark

¢cr = phase angle ¢ at rotor critical speed

¢m = angle between mass center and
shaft reference timing mark

¢r = angle between residual bow vector
3, and the shaft reference timing
mark

k = shaft spring rate, N/cm (Ib/in.) ficient, dim w = shaft angular velocity, rad/s
m = rotor mass, N-s2/cm (lb-s2/in.) 37 = residual bow vector wp = balance speed, rad/s
Uy, = balance weight, N-cm (0z-in.) 6, = complex residual bow wer = rotor critical speed VE/m, rad/s
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ence coefficient, o may be taken as unity. Then the residual bow
may be subtracted from the rotor amplitude.

Zi= 5, = a,é, (36)
Thus,
s _Z1— 8,
bu=""> (37)
u
Choose the balance eccentricity &, such that
), = _éu
Or
. _Z1— 6
& = ——171 (38)

u

This is the balance eccentricity prescribed by Method II. As in
Method I, Z; is measured experimentally at wp and «, determined
by the methods described in Section 4.3. The amount and phase
angle of &, may also be determined experimentally by running the
rotor at a very low speed. From the plots presented in Section II, it
is clear that at low speeds the shaft amplitude equals the residual
bow and the phase angle is ¢, (angle by which the reference timing
mark leads §,).

Method II balances the rotor down to the residual bow at the
balance speed w;, (i.e., the elastic shaft deflection is brought to zero
at wp). The method assumes that the residual bow does not change
with rotor speed when, in fact, equation (28) shows that «, does
depend on speed. It will be shown in Section 4.4 that balancing at
wp using Method II leaves a small amplitude (slightly larger than
the residual bow) near the critical. However, the method is much
better than Method 1.

Method III. Clearly, the optimum balance is given by Fig. 15.
This may be accomplished by Method I with the disadvantage that
the rotor must be operated unbalanced at the critical. Method III
balances the rotor to zero total amplitude at the critical without
actually operating the rotor at w,,.

If a balance weight with eccentricity &, is added to the rotor,
then the amplitude response is given by

Zy = a6, + &) + a8, (39)

Substituting for o, and «, using equations (27) and (28) yields
1 9( A ~ -
=—— + 8,) + kS
Z, A T [mw?(e, + &,) + k5,]

It is desired that the rotor amplitude be zero at the critical speed
such as shown in Fig. 15.

z 2 I w=wy,, =0
Since k = mw,,2, the balance criterion reduces to

é,+ & +56,=0
Or .
&, =—(6, + 5, (40)
Where §, may be determined from the residual runout.
To determine &,, consider the ratio of a,/a,. From equations
(27) and (28) with

or
a, = (Leryy, (41)

If the critical speed is known then «, can be calculated (o, deter-
mined by methods of Section 4.3).

The amplitude of motion at the balance speed w; before balanc-
ing is given by

Zy =, + ap,

With «, known, &, can be calculated.
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é _Zi_aréz
u au
VA W I
~ — _QTz
b=t (wb)ér (42)

Thus, é, can be calculated using equations (40) and (42) and the
rotor balanced to zero at the critical speed without actually operat-
ing the rotor at w.. The only disadvantage is that w,, must be
known. From equations (40) and (42), the balance eccentricity is
given by

s, 4 (% g)g

a, Ay

4 we,l = wile (43)
5, = S —U‘_Z—b5r

au wb

4.3 Determination of the Unbalance Influence Coeffi-
cient, ay. All three balancing methods discussed in Section 4.2
require prior calculation of the unbalance influence coefficient, ay,.
There are two basic methods by which «, can be determined. The
first method is the familiar influence coefficient method in which a
trial weight is added to the disk. This method will be called the in-
fluence coefficient trial weight method. The second method em-
ploys direct measurement of the rotor amplitude and phase angles
at various speeds without the addition of a trial weight. This meth-
od will be called the direct method.

The influence coefficient trial weight method discussed by
Thearle [5] will be reviewed briefly. The amplitude of motion at
the balance speed is given by

Zy= a6, + a,d,

After a trial weight U, has been added, (which yields a trial weight
eccentricity &;) the amplitude at the balance speed is

Z, = a,é,+ &)+ a,b, (44)
Subtracting
Zt - Zl = q,e;
or
Zi-Z,
= (45)

Thus, «, can be calculated since &; is known while Z; and Z; are
measured experimentally.

The direct method assumes that the rotor mass is known. If the
rotor is run at three different speeds without the use of trial
weights, the amplitudes at these three speeds are

Zi =8, +a,d,, w=uw

Zy =@, 05, w=w (46)

Zy=0,6, +a,b,, w=uw

The amplitudes are measured experimentally at each speed. Using
equations (27) and (28), equations (46) can be written in matrix
form. The three unknowns are &,, the effective shaft stiffness k,
and the effective damping c.

2

e, mod 5, —Zy iwZy [T\ Z4w,
ko =—m|mw? B,—2Z, iwyZ, Zywy? p (A7)
c mwy? 0, —Zy  iwsZ, Z 3wyt

If the critical speed is also known, and since it has already been as-
sumed that m is known, k can be solved for immediately. Thus
only two equations are necessary to solve for the two unknowns &,
and c¢. Using equations (27) and (28), a, and a, may be calculated
since k and ¢ can be determined from equation (47).

4.4 Example Balance Calculations. Given:

W =16.9N (3.8 1b) (48)
k=2817.8N/cm (467 1b/in.) (49)
c=0.385N-s/em (.22 lb-s/in.) (50)

The disk is assumed to have an unbalance eccentricity of e, = 2.54
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Fig. 17 Rotor schematic for sample balance problem

X 1073 cm (1 mil) at a phase location of ¢,, = 0 deg (unbalance ec-
centricity in line with the reference timing mark). Also, the residu-
al bow has a magnitude of 5, = 2.54 X 1073 cm (1 mil) at the phase
angle position of ¢, = 90 deg (reference timing mark leads the re-
sidual bow vector by 90 deg). See Fig. 17 for a schematic. Thus

8, =2.54%x107%e cm (1.0 mils) (51
§, =2.54 X103 ¢ cm (1.0 e7'%° mils) (52)

Consider the balance speed to be w, = 188.5 rad/s (1800 rpm). The
critical speed is w,, = 217.9 rad/s (2081 rpm). The influence coeffi-
cients may be calculated directly from equations (27) and (28)
using w = wp

a, = 2.79 e=i19:4°

a, = 3,77 e"19:4° (53)
The amplitude at w, may be determined from equation (26)
Zi =02, + 0,5, (54)

Using equations (51), (52), (53), and (54), Z; can be calculated. In-
Zy =119 X102 % cm (4.69 €719 mils)  (55)

Normally, most of the quantities given in equations (48), (49), (50),
(51), and (52) will not be known. However, they are specified here
so that Z; may be calculated. Z; is usually determined experimen-
tally by operating the rotor at wp (1800 rpm). Also, «,, will normally
be calculated using the influence coefficient trial weight method
outlined in Section 4.3. This method requires that a known trial
weight be added. Pick a trial weight such that the trial weight ec-
centricity is

¢, =2.54 X 1033 cm (1.0 €% 'mils)

Equation (44) yields
Zy =171 X 1073 ¢75%5° cm (6.73 7135 mils)

Again, Z; is normally determined experimentally by operating the
rotor at wp with the trial weight. Equation (45) yields

a, =2.79 71947 (56)

as in equation (53).
Now that a, has been determined, the three balancing methods
discussed in Section 4.2 will be used to balance the rotor.
Method I. Method I balances the total shaft deflection to zero
at the balance speed. Equation (33)
& = _gi
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balancing Methods |, II, and Ili

With equations (55) and (56), the balance eccentricity is
&, = 4.27 X 103 ¢#126-5° (1 68 ¢#126+5" il ) (57)

The amplitude at the critical speed after balancing is given by

(58)

At the critical speed, @, = . From equation (27) with & = w., =

VE/m

Zew = [au(éu + éb) + arSr ]w=wcr

mw,,
o, =a, = z_cc (59)
Therefore
a, =0a, = 9.74 e-ig[]"

With equations (51), (52), and (57)

Z,, =8.66 X 1033 cm (3.41¢%60 mils)  (60)

Thus the rotor amplitude after balancing to zero at w, is 8.66 X
1073 cm (3.41 mils) at the critical speed.

Figs. 18 and 19 show the response and phase angle curves for the
rotor given in this example. The response curve for the unbalanced
rotor is indicated in Fig. 18. Note that for fp = ws/wer = 0.86, the
amplitude is 11.9 X 1073 cm as in equation (55). Fig. 19 shows a
phase of about ¢ = 75 deg for the unbalanced case at f, = 0.86.
This is very close to the phase angle indicated in equation (55).

After balancing by Method I, the response curve as shown by
Fig. 18 is similar to Fig. 6 and Fig. 11 (i.e., rotor balanced to zero at
wp and a large amplitude remaining near the critical). Note that
the amplitude at a frequency ratio of 1.0 (w = w,,) is approximately
8.6 X 1073 cm as in equation (60). Also, close examination of Fig.
18 shows that the maximum amplitude of about 9.1 X 10~3 cm oc-
curs at a frequency ratio slightly higher than 1.0.

The phase plot after balancing by Method I is shown in Fig. 19.
Note the 180 deg phase shift that occurs at f,. This is expected
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since the amplitude is zero at f;,. The same type of 180 deg shift oc-
curs in Figs. 7 and 12 for the reasons discussed in Section 2.2. The
phase shift that occurs at f = 1.0 is mathematical rather than phys-
ical (i.e., a 360 deg shift). Fig. 19 indicates a phase angle of ¢.. = 0
deg or 360 at f = 1.0. This agrees with equation (60).

Method II. Method II balances to minimize the elastic shaft
deflection at the balance speed. The balance eccentricity may be
determined from equation (38).

ey = _Zi—05,

a,

Using equations (52), (53), and (55), &, can be determined.
&, = 3.4 X103 cm (1.34 €13 “mils) (61)
The amplitude at the critical speed after balancing by Method II is
Z,, =2.99 X 107 ¢-i82"cm (1,18 =2 mils)  (62)

The result of balancing the given rotor using Method II is also
shown in Figs. 18 and 19. Fig. 18 shows a response curve that is al-
most a straight line except for a slight bump at f... The amplitude
at speeds everywhere except near the critical equals §,. Note that
the elastic deflection is zero for all speeds except near the critical.

Fig. 19 shows the phase plot for Method II. It is also a straight
line with a slight downward bump near f,,. At all frequency ratios
except near f.,, the phase angle ¢ = 90 deg which is ¢,.

Method III. Method III balances the total shaft deflection to
zero at the critical speed. First, a, must be calculated (assuming
wer known) using equation (41)

w

2
ar = ((‘U_cbr) au

With «, given by equation (56)

a, = 3,73 ¢-i194 (63)
The balance eccentricity is given by equation (43)
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Using equations (52), (55), (56), and (63)

&, =3.59 %107 cm (1.41e'% mils)  (64)

Fig. 18 shows the response curve for balancing by Method III. As
expected, this is the optimum balance as in Fig. 15. Fig. 19 shows
the phase angle curve for Method III. Note the 180 deg phase shift
at f = 1.0. This shift occurs since the amplitude goes to zero at f =
1.0 (see Section 2.2).

Similar experimental and theoretical response curves for a uni-
form, flexible shaft corresponding to balancing Method I and III of
Fig. 18 are shown in Parkinson, et al. [3, 4].

5 Experimental Balancing Results

5.1 Experimental Equipment. A flexible single mass rotor
mounted in plain journal bearings was used to evaluate the effect
of rotor bow on the dynamics and balancing of the rotor. The test
rig consisted of a 17.79 N (4.0 1b) disk mounted midway between
the bearings. The bearing span was 30.48 ¢m (12.0 in.) and the
shaft diameter was 0.9525 cm (0.375 in.). The bearing stiffness and
damping were estimated to be 1576.1 N/cm (900 lb/in.) and 0.35
N-s/cm (0.2 b — s/in.) for each bearing. Bently noncontacting
probes were used to measure amplitude at the rotor center and to
establish a phase reference signal. The results were observed both
on an oscilloscope and a Bently vector tracking filter. The ampli-
tude was plotted on an x-y plotter.

5.2 Experimental Techniques. The amplitude and phase of
the residual bow, §,, were measured at low speed. The balancing
speed wp, was chosen to be 1800 rpm which was below the rotor
critical speed. The rotor was run at wp and the shaft amplitude and
phase, Z;, were measured. A known trial weight was then placed on
the disk and the amplitude and phase, Z;, were again measured at
wp. The unbalance influence coefficient, oy, was then calculated
using equation (45). The rotor was balanced twice using the meth-
ods discussed in Section 4.2. First, the rotor was balanced to zero
amplitude at wp. Then, the rotor was balanced to zero amplitude at
the critical speed.

5.3 Results. Fig. 20 shows the experimental response curves
for the rotor before balancing and after balancing to zero ampli-
tude at 1800 rpm. Note that for the “after balancing” curve, a large
amplitude remains near the critical speed as predicted by balanc-
ing Method I of Section 4.2. This curve is very similar to the re-
sponse curves of Fig. 6. It also matches the response curve of Fig.
18 for balancing by Method 1.

The experimental curves of Fig. 21 represent the rotor response
before balancing and after balancing to zero amplitude at the criti-
cal speed. The “after balancing” curve corresponds very closely to
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Fig. 21 Experimental response curves before and after balancing to zero
at 1800 rpm

Fig. 15 (i.e., the optimum balance). It also is very similar to the re-
sponse curve of Fig. 18 for balancing Method III.

6 Discussion and Conclusions-—Part IT

The optimum balance of a rotor with a bowed shaft results in
the shaft amplitude being less than or equal to the residual bow for
all speeds and equal to zero at the critical. This optimum balance
is achieved by balancing the rotor to zero amplitude at w.,. Balanc-
ing Method I results in the optimum case only when wp = wcr. This
requires the rotor to be operated unbalanced at the critical. Meth-
od III produces the optimum balance without actually operating
the rotor at w,,. However, the critical speed must be known prior to
balancing.

Balancing by Method I with w;, not equal to w.- reduces the shaft
amplitude to zero at wp. However, large amplitudes remain near
the critical.

Method II balances the elastic deflection to zero at w; leaving
the residual bow amplitude. This procedure results in amplitudes
equal to the residual bow for all speeds except near the critical
where the amplitude is slightly larger then 6,.

Clearly Method III is the best balancing procedure discussed in
Section 4.2. If the critical speed is not known, a combination of

DISCUSSION?
S. Mohan3

The authors are to be commended for presenting this excellent
paper explaining the effects of residual bow parameters (5, and
¢y) for a single mass flexible rotor in rigid supports. The applica-
bility of these results to the industrial rotating equipment is some-
what limited because of: (a) the inherent assumptions made to
simplify the analysis, especially the assumption of rigid bearings
and treatment of damping; (b) the impracticality of instrumenting

2 Discussion on Paper Nos. 75-GT-48 and 75-GT-49.
3 Analysis Engineer, Dresser Clark Turbo Products, Dresser Industries,
Inc., Olean, New York.
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Methods I and II may be employed. First, balance the rotor using
Method II. Method I may then be used with w, = w.r to balance
the shaft amplitude to zero at w.,. In this case, operating the rotor
at w., will not be so undesirable since the amplitude at w., has been
reduced considerably by the first balance of Method II. This com-
bination balance should produce the optimum result.

In all balancing methods discussed, the unbalance influence
coefficient must be known prior to balancing. Sometimes it may be
undesirable to add a trial weight since its addition may cause larg-
er amplitudes at wp. In these cases, the direct method should be
used.
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the machines at the middle of the shaft for vibration measure-
ment. Authors’ comments in this regard would be appreciated.

It is felt that a careful analysis of vibration and phase data is of
utmost importance in using the results of this paper. At speeds
where the vibration is low (for example f ~ 0.707 (Fig. 6) and f =
1.414 (Fig. 11) it is important to monitor the phase changes care-
fully. The presence of nonsynchronous vibration components due
to gears or misalignment complicates the data analysis further.
The movement of the timing mark on the shaft orbit (filtered at
running speed) is very useful in such instances. The discusser has
come across a number of turbomachines exhibiting response char-
acteristics similar to Fig. 6 as well as Fig. 11. At one particular in-
stance, a response similar to Fig. 6 was recorded at an outboard
probe. This response was solely due to an electrical run-out indica-
tion at that location and not due to a bowed shaft.

Overall, the paper does give a good feel for explaining the usual
phase and response characteristics of industrial turbomachines
and thus helps in predicting their reliability with confidence.
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C. Jackson?

I will presume this paper(s) is to be selected for the Transac-
tions as it offers both theory and results in the two parts of a com-
mon and misunderstood phenomenon noted by many engineers re-
cording rotor response data, or involved in balancing. The typical
response would be for the phase mark or angle to shift against the
direction of rotation as speed increases, and for the peak ampli-
tude of any critical to occur at the 90 deg shift, and the shift to
complete with an 180 deg total shift as the mass center moves for-
ward and the rotor commences to rotate about mass centers rather
than geometric centers. Further, one expects to see the displace-
ment of the rotor increase due to the accelerating forces, Me W2.

The authors have shown that an existing bow in the rotor causes
strange things to happen as outlined in this paper. I would also
preclude that multidisk rotors with a determined modal mass
should respond in a similar manner, though complicated by other
nonlinear reactions such as working friction.

The characteristics of phase shift and reduction with speed of
the vibration level, have been noted by me on several occasions. I
would like to ask several questions of the authors based on these
two papers.

Presuming that a residual bow exists on a rotor, please comment
on the effects from a low speed, i.e., 300-500 rpm balance in a bal-
ance-machine on a rotor to operate at 8000-10000 rpm. One would
expect that correction to apply primarily to the residual bow ec-
centricity.

In Method II, 75-GT-49, page 4, Fig. 18, please explain the in-
crease in amplitude at the critical, frequency ratio = 1.

Since proximity probes can give an electrical runout of a shaft’s
surface at low speeds (or high) due to the anomalies in the shaft’s
surface through one rotation, might not this lead one to a calculat-
ed correction that is in error? Take the case where the surface me-
chanical runout is 0.2 mils by dial indicator yet the eddy current
probe indicates 01.0 mils at even a different phase than the me-
chanical runout.

Another peculiarity could be expected to happen. Should the
rotor be honed in the area seen by the probes but after the impel-
lers are shrunk causing some residual bow? The machined area
could not only be free of mechanical runout but also electrical run-
out yet an actual mechanical bow of the rotor exists. I would not
expect an answer on this quirk of events; yet, such a thing is possi-
ble especially on a repair.

It might be interesting to discuss the Method II advantages, if
any, over Method III.

Under Nomenclature of Part I, 75-GT-48, page 2, it was noted
that the vector bar was left off the unbalance eccentricity vector,
and a vector bar rather than absolute value bar was shown on the
nondimensional residual bow ratio.

In equation (43), I found it quite easy to make a mistake by not
converting the first term into eccentricity, inches, from the 1/g or
1/0z units generally determined from trial weights. Is the complex
residual bow, second term of equation (43) an eccentricity or a
peak-to-peak term?

In conclusion, I wish to express my appreciation to Gunter and
his staff, Paul Allaire and John Nicholas, for two interesting pa-
pers which may well entice our group into a test on a flexible mul-
tidisk rotor. I might add that we have only experimented with this
solution but it has required that the bow correction weight be nec-
essary to go through the critical on a six mass rotor.

4 Engineering Fellow, Mechanical Technology Department, Monsanto
Polymers & Petrochemicals Co., Texas City, Texas. Mem. ASME.
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Author’s Closure

The authors wish to express their appreciation of Jackson and
Mohan for their interest and comments on this paper.

In response to Jackson’s inquiries, a low speed balance to zero
amplitude at the center of a rotor with a residual bow could be cat-
astrophic. At low speeds, the rotor amplitude is due almost entire-
ly to the residual bow amplitude (see Fig. 4). In order to balance
the rotor amplitude to zere, a very large balance weight would have
to be added at the rotor center to counteract the effect of the re-
sidual bow (i.e., to unbend the shaft). Using the example suggested
by Jackson, consider balancing a bowed rotor at 500 rpm whose
operating speed is 10,000 rpm. Assume the rotor critical speed on
rigid supports is w,, = 523.6 rad/s (5000 rpm) and that the rotor
has a 5.08 X 1073 cm (2 mil) bow. For a balance to zero amplitude
at wp (500 rpm), equation (26) requires that there must be an ef-
fective unbalance &, such that

- o, 2~
€u=—Er 5r
u

Using equations (27) and (28)
“ W, o2
e, =— (—(;.;;r) 267‘

Using the speed valves suggested here, the magnitude of the un-
balance needed to correct the residual bow at 500 rpm is 0.508 cm
(200 mils) which is extraordinarily large. Trying to run the rotor
up in speed after adding a balance weight to correct for the residu-
al bow would cause tremendously large amplitudes at the critical.
This analysis should not be confused with a rigid body balancing
in two planes for multimass rotors. The balancing planes are usu-
ally taken at or near the bearings, which in turn are located near
the ends of the machine. At the low speeds used for rigid body bal-
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ancing, the residual bow looks like an unbalance eccentricity. If the
balance weights are placed opposite the residual bow but out near
the bearings, the amplitude of vibration and the force will both be
greatly reduced at the balance speed. However, since the weights
are located near the bearings, they will not excite the first bending
mode, as will a single weight at the rotor center.

The approximation used in balancing Method II was that the re-
sidual bow influence coefficient, o, equals 1.0. This, of course is
not true as «, is given by equation (28). This approximation causes
the slight rise in amplitude at the critical speed for Method II in
Fig. 18.

Fig. 22 shows the elastic response of the shaft before balancing
and after balancing by Methods I, II, and III. These are the same
curves as shown in Fig. 18 except the residual bow vector was sub-
tracted from the total shaft amplitude leaving only the elastic de-
flection. If bearing forces and shaft stresses (both proportional to
elastic shaft deflection) are considered more critical than total
shaft amplitude, Method II is superior to Method III for speeds
below, at and slightly above the critical speed.

Figs. 23 and 24 show response and phase angle curves for a rotor
with zero residual bow and various values of mechanical runout
(amplitude 8o and phase ¢o). Mechanical runout is a constant run-
out vector that may be picked up by noncontracting probes due to
out-of-roundness of the surface monitored by the probes. Exami-
nation of Figs. 23 and 24 reveal that mechanical runout looks very
similar to residual bow runout. Frequently, mechanical runout and
residual bow runout are both present in a rotor. Furthermore, it
may be difficult if not impossible to separate the two effects. In
such cases, balancing down to the runout, whether mechanical, re-
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sidual bow or both, would be recommended. Thus, balancing
Method II should be employed. Mechanical runout should be fair-
ly easy to detect by using a dial indicator to measure the surface
the noncontacting probe is monitoring. If the surface is perfectly
cylindrical, then the mechanical runout is zero.

Electrical runout may also be encountered due to magnetic ef-
fects in the shaft or other causes. This usually results in a constant
amplitude added to the total shaft amplitude at all phase angles.
When no means of determining the exact nature of the low speed
probe readings is available, Method II appears to offer the best
balancing procedure.

The authors suggest that amplitudes may be measured in peak-
to-peak values or peak values as long as consistency is maintained
throughout all measurements.

The assumptions of a single mass rotor on rigid supports may
easily be extended to symmetric, inboard, multimass systems on
flexible supports by using a modal mass and effective stiffness and
damping coefficients that act at the rotor center. These balancing
procedures may be used for balancing out the first bending mode
which cannot be accomplished by low speed rigid body balancing.

It is true that it is often impractical to measure the vibration
levels at the machine center. Every attempt should be made, how-
ever, to monitor the amplitudes at the shaft center since many
times this is where the maximum amplitude occurs. In many cases,
a critical speed computer program has already been run on a ma-
chine. This may be used to infer the amplitude at the rotor center
from data taken in other areas if the machine operates near the
first bending mode.
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