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The effects of angular acceleration on a Jeffcott rotor have been examined both theoreti-

cally and experimentally. The equations of motion were solved via numerical integration.
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The rotor’s response to unbalance was predicted for a number of cases of acceleration and
damping. Both amplitude and phase responses were studied. In addition, techniques were

developed for identifying system damping from data taken during accelerated runs. The
results of the analysis indicate that for high acceleration rates the amplitude response
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at the critical speed may be reduced by a factor of four or more. The speed at which the
peak response occurs can also be shifted by 20 percent or more. Experimentally, a small
lightly damped rotor ({ = 0.0088) was run for several acceleration rates. The peak re-
sponses typically agree within 6 percent of theoretical predictions. Also, a beat frequency

was observed both theoretically and experimentally after the rotor had passed through

the critical speed.

Introduction

The high speed operation of many modern machines necessitates
their passing through resonances to attain a specified operating speed.
In many cases, to insure that a machine safely traverses a critical
speed, the machine is rapidly accelerated. However, the transient
nature of the passage through the critical speed generally limits the
availability of data concerning the fundamental resonant behavior
of the system. A change in operating speed or rate of acceleration can
strongly influence the machine’s maximum response to unbalance
and the speed at which it occurs.

In many cases a rotor is rapidly accelerated from rest to operating
speed, thus reducing the destructive effect of the presence of critical
speeds. However, the deceleration rates on many machines are not
controllable. Since deceleration rates are generally slowerthan ae-
celeration rates, resonant problems may be encountered on run-down,
where they may have been avoided on run-up, causing machine
damage.

The phenomenon of acceleration through resonance was investi-
gated analytically via a convolution integral by Lewis [1]. His solution
displays the amplitude of vibration as a function of non-dimension-
alized operating speed. He employed a forcing function of constant
amplitude; i.e., it did not vary with speed as in a real unbalance force.
When mass unbalance is considered as a forcing function, the am-
plitude varies as the square of the operating speed. As a result, his
results may lead to significant errors when applied to a rotor system.
Furthermore, Lewis deals only with the amplitude of response and
does not address the phase relationship between unbalance and rotor
response.

Baker [2] studied the acceleration of a rotor using a mechanical
analog to solve the model equations. However the range of acceleration
rates which he employed was out of range for most machinery. Also,
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he did not include any predictions for very lightly (but nonzero)
damped cases. Unfortunately, these are the machines on which ac-
celeration has the most pronounced effect. Phase relations were also
not considered in reference [2].

Meuser and Weibel [3] studied accelerating systems with nonlinear
spring rates via a mechanical analog. A constant forcing function was
used similar to that in reference [1]. Primarily, this paper deals with
the effects of nonlinearities rather than acceleration rates.

Gasch, et al. [4] consider acceleration of a rotor under the as-
sumption of constant torque, allowing the acceleration to vary as
torque is absorbed in resonant response. Their work avoids the range
of practical application by assuming large unbalance eccentricity and
very large acceleration rates. Both of these assumptions fall outside
of the realm of most machine applications. Reference [4] also only
presents results for the amplitude of the response; phase is not con-
sidered, nor is the speed at which maximum response occurs.

In all of the previous works, the thrust of the analysis was on pre-
dicting rotor response during acceleration. The objective of this paper
is twofold. In addition to looking at rotor response during acceleration,
a parameter identification method is developed using data from rotors
during acceleration. Particularly, the system damping ratio is deter-
mined from the phase angle measurement of an accelerated rotor. It
may also be determined by observing the speed shift in maximum
response for a known acceleration.

Furthermore, experimental data for a rotor system have not been
previously presented (although mechanical analogs were used). Thus,
another aim of this paper is to present results from a rotor rig dem-
onstrating the effects of acceleration.

Acceleration rates (and deceleration rates) range from zero to a
maximum which has been seen in modern applications. The range of
damping covers rotors from the heavily damped ({ = 0.25) to very
lightly damped as might be encountered in a system on ball-bearing
supports ({ = 0.01).

The theoretical solution employs a model based on a speed de-
pendent forcing function as is the case in rotating equipment. Only
small values for unbalance eccentricity (and hence constant acceler-
ation rates) have been considered here. This assumption is in general
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Fig. 1 Model of Jeffcott rotor

quite reasonable. High values of unbalance are quite destructive to
machinery and balancing techniques do exist to limit the unbalance
in a system to levels where vibration has little effect on acceleration
rates. Overall, the aim of this paper is to present results in the range
of practicability and applicability to gas turbine rotors and similar
systems.

Theoretical Model and Solution

The theoretical model employs a single unbalanced disk, centrally
mounted on an elastic shaft which is, in turn, mounted symmetrically
on rigid bearings (see Fig. 1). By application of Newton’s second law
to the system, the following equations of motion are obtained:

—KX — CdX/dt = Md?X ., /dt? (1)
—KY — CdY/dt = Md2Y,,/dt? 2)

The coordinates of the disk center of mass, X.m and Y., expressed
in the fixed coordinates X, Y are

Xem =X +ecosf 3)
Yom =Y+ esind (4)

Differentiating each of the above equations twice and substituting
into equations (1) and (2), the equations of motion are expressed
entirely in the fixed coordinate system:

X+ CX/M+ KX/M = e(w? cos 0 + a sin 0) (5)
X+CY/M+KY/M=e(—w?sinf + « cos 0) 6)

The equations of motion previously derived were simultaneously
integrated in time using a standard Euler integration scheme. A
similar set of equations was solved by Lewis [1}, using a convolution
integral. However, the numercial solution has several advantages, one
of which is ease of execution. Furthermore, the numerical technique
provides versatility in the types of acceleration functions which can
be employed (only constant acceleration is presented here). Also, it
allows for the solution of phase angle, a formidable analytical problem.
The techniques developed here may be applied in more advanced
systems with several degrees of freedom for which the convolution
integral would be impossible.

—]N OMenclature

The integration procedure used a time step yielding approximately
1/500 revolution per step. Numerical stability was checked by varying
step size to as little as 1/25,000 revolution. Results differed by less than
one percent.

The results of the integration are expressed in polar coordinates.
The instantaneous amplitude of vibration is d = /X2 + Y2. An angle,
B, is defined as tan! (Y/X). The phase angle, ¢, is defined as ¢ = 8
— 0, which represents the phase difference between the rotor response
and unbalance.

The initial conditions for the integration procedure are taken as
the unaccelerated or steady-state conditions for a Jeffcott rotor. This
technique has the effect of operating for an extended period at some
initial speed and then accelerating abruptly.

Unbalance in the system is considered to be small. Non-dimen-
sionally it is represented by e/rg, where r, is the disk radius of gyra-
tion. For this model, e/rg was of the order of 1073, For this range of
eccentricity, constant acceleration may be associated with a constant
driving torque. Consequently, the energy balance which yields angular
acceleration rate as a function of applied torque becomes trivial and
is not considered here. Large magnitudes of unbalance (e/r; = 0.10)
are examined by Gasch et al. [4], but are in general not representative
of unbalances in real machinery. A variety of acceleration rates, both
positive and negative, were used here. Also, several cases with different
values of system damping were run to demonstrate the effect of
damping on the acceleration response.

Theoretical Results

In the previous section, equations were derived for the response of
a Jeffcott rotor as it accelerates through the critical speed. In this
section, typical results are presented. First, the predicted unbalance
response of the rotor is presented for several system parameters cases.
Second, it is shown how results from accelerated runs can be used for
system parameter identification.

Critical Speed Response. Results of the numerical analysis are
presented in several formats. In Figs. 2-5, nondimensionalized am-
plitude is plotted against the speed ratio, 2. Each plot has on it several
curves, each representing runup at different acceleration rate. The
angular acceleration is given nondimensionally by an acceleration
ratio, ¥ = o/w.2. Each of the figures covers a different system

A = amplification factor, 6/e

A, = critical speed amplification factor at no
acceleration, Mw/C

Amax = maximum amplification factor during
acceleration

C = system damping coefficient

e = unbalance eccentricity

K = shaft stiffness

M = mass of the disk

rg = radius of gyration of the disk
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X, Y = shaft displacements

X, Y = velocities

X, Y = accelerations

« = angular acceleration

v = acceleration ratio, a/we,2

& = shaft deflection, v/ X2 + Y2

{ = normalized damping, 1/(2 A.)
6 = angular displacement

¢ = phase angle

¢dnode = phase angle at “node” (51 or 141
deg)

Q = speed ratio, w/we,

(Qnode = speed ratio at node

w = angular velocity

wer = undamped system critical speed,

K/M

Wmax = operating speed at Apax

wep = instantaneous operating speed
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Fig. 2 Critical speed response for runup for { = 0.010
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Fig. 4 Critical speed response for runup for { = 0.05

damping ratio: { = 0.10, 0.020, 0.05, and 0.10. Also in Figs. 2-5, the
phase angles are shown, which correspond to the various speeds and
acceleration rates. In Fig. 6, several cases of deceleration are consid-
ered for a system with a damping ratio, { = 0.020. The results are
presented in the same manner as in Figs. 2-5.

In each of the amplitude vs speed plots, several phenomena are
observed. First, the maximum amplitude of vibration is reduced with
the introduction of acceleration or deceleration. Lightly damped
systems show the most pronounced reductions in amplitude. Also,
the speed at which the maximum amplitude occurs {(wmas) is increased
with positive acceleration and decreased with deceleration. This effect
also is more outstanding in a lightly damped rotor. These phenomena
are summarized in Figs. 7 and 8 and are discussed later in this sec-
tion.

Another peculiarity exhibited by accelerated rotors which is shown
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by the amplitude plots is a “beating” frequency or harmonic oscilla-
tion in the amplitude of vibration, itself. While this behavior has been
shown analytically by Lewis [1] and with the aid of a mechanical an-
alog system by Baker [2], neither of their works offers a qualitative
explanation of the effect.

This type of rotor behavior is easily explained by the interaction
of a free vibration at the system natural frequency, which is excited
as the rotor passes through the resonance and a forced vibration at
the instantaneous operating speed. Precise measurement of the “beat”
frequency shows it to be equal to the difference in operating speed
and the critical speed (wop — wcr). The frequency of the “beating” is,
therefore, independent of both damping and the acceleration rate.
In Figs. 2-6 the beating frequency appears to be dependent on .
However, one should remember that in these figures, the value of wop
is dependent on both v and time and thus, the abscissa is not a con-
stant multiple of time for all of the curves.
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Only the amplitude of the beat depends on damping. The beating
phenomenon is inherently transient as is the free vibration at the
critical speed. This is why the beating only occurs in the region of the
amplitude plots which follows the critical speed in time, and in heavily
damped rotors it is barely noticeable. The accuracy of these results
is demonstrated experimentally in the following section.
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The present solution for one case is compared to the analog solution
of Baker [2]. Results are shown in Fig. 7 for { = 0.025 and v = 3.9 X
1073, As can be seen, very good agreement is obtained. The difference
between the two peak responses is less than 2 percent. The “beating”
also occurred at the same frequency.

Looking at the phase relations in Figs. 2-6, several more phenomena
can be identified. Unlike the unaccelerated rotor, systems with ac-
celeration do not typically show a 90 deg phase angle at the critical
speed. Instead, the phase diagrams show “nodal” points at which the
phase is independent of the acceleration rate. One will notice for the
case of rundown (F'ig. 6) a nodal point occurs above the critical speed,
whereas for the cases of runup (Figs. 2-5), the nodal point occurs
below the critical speed. In cases of heavy damping both nodal points
are seen in both runup and rundown.

Although it has not been proven analytically or numerically, these
results strongly suggest that two phase nodal points exist for any
system and will be shown unless the phase measurement is obscured
by transient vibration as is the case when a rotor undergoes beating.
Furthermore, the nodal points are found at ¢ = 51 deg and ¢ = 141
deg regardless of damping. The use of these nodal points for system
parameter identification will be discussed in the next subsection.

For several of the cases, the phase angle of the total motion is seen
to be undefined after the rotor passes through the critical speed. This
phenomenon is due to the beating frequency previously described.
Two dominant frequencies are present in the system during the
beating process. Since the phase angle represents the angle of the
synchronous vibration component only, determination of the phase
angle of the total motion becomes meaningless; i.e., the predominant
frequency of vibration is nonsynchronous.

- The results of the rotor response calculations are summarized in
Figs. 8 and 9. Figure 8 illustrates the maximum nondimensionalized
excursion that a shaft undergoes as a function of acceleration ratio.
Several values of system damping are included. Figure 8 represents
the vibrational amplitude suppression (or in some cases the magni-
fication) capabilities that accelerating a rotor through a critical speed
presents. In Fig. 9, the nondimensionalized speed at which the max-
imum vibration occurs is presented as a function of a/w,2 for several
damping ratios. Figure 9 thus represents the effect rotor acceleration
has on the “observed critical speed.”

For example, for a rotor with an acceleration ratio of 0.001 and a
damping ratio of 0.05, one can expect a maximum response of 78
percent of an unaccelerated case and expect the maximum response
at 1.17 times the critical speed. These effects are even more pro-
nounced for lower values of {.

Also of interest from Figs. 8 and 9 are the cases with large values
of damping. For no acceleration (/w2 = 0) and a damping value of
{ = 0.25, the value of Apax/Acr is 1.04. The damped critical speed is
at 1.07 times the undamped critical speed. As a result of the constant
forcing function used by Lewis [1], he found a depressed critical speed.
Baker [2] studied only very high acceleration rates (y < 4 X 10~3) and,
thus, cannot be used for comparison here.
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Fig. 9 Critical speed shift as a function of acceleration rate and damping
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System Parameter Identification. In the previous subsection
the occurrence of “nodal” points on the phase diagrams was deter-
mined. These nodes occurred at ¢ = 51 deg and 141 deg regardless of
the value of {. In this subsection the use of these conditions to de-
termine the system damping will be discussed.

At the nodal points the relationship for phase is the same as for
steady state operation (since all curves for one value of { pass through
the same point on a ¢ versus w/w,, diagram), namely:

tan (¢noge) = C wnode/(K - Mwnodez) 7
Thus, the damping can be calculated by:
f = [(1 - Qnode2)/2 Qnode] tan (Qnode) 8)

where Q@ = w/wer.

To apply the above equations, one must first obtain response plots
from a rotor for any acceleration. One next determines the value of
the nondimensionalized rotational speed at ¢ = 51 deg or 141 deg, i.e.,
Qnode- Once the value of Qpoqe is determined, ¢node and Lnode are
substituted into equation (8) such that { is found.

This method is most easily applied to rotors of significant damping
(¢ = 0.020). For more lightly damped systems, the nodal points are
less than two percent removed from the critical speed and are difficult
to accurately distinguish experimentally.

Experimental Results

Critical Speed Response. To demonstrate the accuracy of the
results, an experimental analysis was completed. The experimental
rig and data analysis system are shown in Fig. 10. The test rotor
consisted of a single mass (1.63 kg) centrally located on a 9.53 mm steel
shaft. The bearing span was 40.6 cm. The rotational speed was con-
trolled with a Y hp d-c motor. The first critical speed of the rotor was
1730 rpm. On run-up the acceleration rates were constant within 5
percent and on run-down the deceleration rates were constant within
1 percent.
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DEMODULATORS
RAW SIGNAL O O @
TACH TAPE
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Fig. 10 Test rotor and instrumentation
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Fig. 11 Typical experimental critical speed response and theoretical pre-
dictions
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The rig was instrumented with three displacement transducers.
Two were located near the mass and the third was placed over a notch
on one end of the shaft. The two central probes were calibrated and
particular probes were chosen such that the two calibration curves
were matched. Thus, direct comparison of the outputs of the X and
Y probes was possible.

Data was analyzed using a synchronous tracking filter. The notch
on the shaft was used as the trigger for the tracking filter. OQutputs
from the tracking filter included total or synchronous amplitude and
synchronous phase angle (measured with respect to the notch). Re-
duced data was plotted using an analog plotter. Raw signals from the
displacement probes were recorded on an FM tape recorder so that
permanent records were obtained.

The rig was first run for no acceleration. A mass unbalance vector
of 0.010 mm was used and the bow vector was less than 0.003 mm.
From this base run, the system damping was determined. First, the
response at the critical speed was divided by the response at four times
the first critical speed. The latter corresponds to the mass unbalance
vector. This generated a nondimensionalized critical speed response
of 59.0, which corresponds to a damping ratio of 0.0085. Secondly, the
slope of the phase angle versus speed curve was used to calculate {
by:

§=(d¢/dw)er™! X we ! )

From equation (9), the value of ¢ was found to be 0.0091. Thus, since
a difference of less than 7 percent was found, an average of the two
methods was used to define the damping: { = 0.0088, A, = 57. The
bow and unbalance vectors were held constant for the remainder of
the tests.

Several tests were performed including acceleration and deceler-
ation runs. One typical run is presented here. For the particular run
presented, the value of a/w,,2 is 7.88 X 10~4. The total motion data
is presented in Fig. 11. Also presented in Fig. 11 is the theoretical
prediction. The damping ratio determined from the baseline case is
used in the prediction. As can be seen in Fig. 11, excellent agreement
is obtained. First, the theoretical and experimental maximum re-
sponses are seen to occur at the same rotational speed (w/w,, = 1.050)
and the beating is seen to occur experimentally at the same frequency
as predicted. Also, the maximum amplitude (A/A.,) is observed to
be 0.62, as compared to the predicted value of 0.58, which results in
a difference of 6 percent. Results from other tests were similar and
are not presented for brevity.

System Parameter Determination. As alast step, experimental
data are presented for a larger rotor mounted in pressure dam journal
bearings and the vibration data are used to identify the system
damping by three methods. The rotor was a 25.4 mm shaft with single
mass of 13.55 kg centrally located. The critical speed of this rotor was
3300 rpm. The motion at the center of the shaft was monitored, and
a typical response plot is presented in Fig. 12. The rotor response as
well as the test rotor itself is described in reference [5] in detail. In Fig.
12, both the relative phase and magnitude (mm) of the rotor are
presented, and this figure is for an acceleration ratio of v = 1.3 X
10~4.

168. 88
] Wep =55 Hz_ 4
- PHASE M rY=1.3x10
e .
4. 009 HZ 148.098
878
MAG 4
m. -
4
g v v + v
48. 998 HZ 149.08
Fig. 12 Data from reference [5] used to demonstrate parameter identifca-

tion
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The data for this rotor are analyzed by three methods so that the
system damping could be determined. First, the amplification factor
was determined at low acceleration rates to be 12.2, by the ratio of the
response at the critical speed to the rotor unbalance eccentricity, i.e.,
¢ = 0.041. Second, the slope of the phase diagram at low acceleration
rates yielded a value of { from equation (9) to be 0.044. And finally,
using the nodal method for ¢nede = 51 deg (measured with respect to
low speeds) yields a ratio of Qnede = 0.967 from Fig. 12. Using these
data in equation (8) yields a value of { = 0.042. As can be seen, very
good agreement is seen with differences less than 5 percent being
present between the nodal method and either of the other
methods.

Conclusions

Overall, a Jeffcott rotor has been modeled theoretically, and the
response (amplitude and phase) of the system as it was accelerated
through the critical speed was predicted. A numerical technique was
used to solve the equations of motion. If more complex multimass
systems are to be examined, such numerical techniques will be nec-
essary as convolution methods will not be practical. Also, experimental
data were presented to demonstrate the accuracy of the method.
Ranges of system damping, acceleration rates and unbalance eccen-
tricity were studied which are typical in gas turbines and similar
machinery. Specific conclusions include:

1 A beating frequency is observed after a rotor passes through the
critical speed. The beating represents the difference between the
operating and critical speeds.

2 High acceleration rates are seen to affect systems with low
damping ratio the most. For systems with { 5 0.25, the maximum
response varies by less than 10 percent for practical ranges of accel-
eration. The speed at which the maximum response is realized is de-
pendent on the acceleration rate, again strongly so for low system
damping.
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3 A method was developed such that one can use a response phase
plot for an accelerated rotor to easily determine the system damping.
Such a method was previously not available.

4 Experimental results are presented to demonstrate the accuracy
of the predicted responses. Differences between the theoretical and
experimental results are less than 6 percent.

5 Experimental results are presented to demonstrate the method
of parameter identification for an accelerated rotor. Differences be-
tween the presented methods for an accelerated rotor and conven-
tional methods for the same unaccelerated rotor are less than 5 per-
cent.
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