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Large Rotor Systems

A scheme is presented for calculating the vibrations of large multi-component
flexible rotor systems based on the component mode synthesis method. It is shown
that, by a modal expansion of the elastic interconnecting elements, the system
modal equation can be conveniently constructed from the undamped eigen
representations of the component subsystems. The capability of the component
mode method is demonstrated in two examples: a transient simulation of a two-

spool gas turbine engine equipped with a squeeze-film damper; and an unbalance
response analysis of the Space Shuttle Main Engine oxygen turbopump in whick the
dynamics of the rotor and the housing are both considered.

Introduction

When the total number of degrees of freedom of a dynamic
system is too large for even modern digital computers to
handle economically, analysts resort to the modal method in
which the system is represented by its free vibration modes.
The advantage of using a modal representation consisting of a
few low frequency modes is that the associated problem size
can be reduced, leading to a subsequent saving in computer
time [1-12]. The modal method has been a popular tool in
solving difficult problems involving single and double spool
rot_fors. Childs [1-2, 4-5] performed transient rotor-dynamic
analyses with undamped normal modes. Choy [6, 8] and
Gunter, et al. [7] evaluated the accuracy of the modal method
in single-shaft linear rotor analysis including bowed shaft and
skewed disk effects. Transient analyses of dual-rotor aircraft
engines were attempted by Dennis, et al. [3} and Childs [4]. In
both papers, the transient orbits of the rotors due to suddenly
applied unbalance were computed with the undamped normal
modes of the linearized system. In [4}, rotor viscous
destabilizing internal damping was accounted for by
judiciously applying anti-symmetric, cross-coupled stiffness
factors to the modal equations. In all these analyses, the
system modal equation was based on normal modes
calculated from the full equation of motion of the complete
system. )

A more advanced form of the normal mode method is
offered in the use of component modes [9-11]. In this scheme,
a dynamic structure is partitioned into a number of smaller
substructures. Each substructure modal character is in-
dividually derived, through analytical means or actual
vibration testing [12]. The total structure is then constructed
from a reduced number of component modes from each
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substructure. This procedure, besides having the benefit of
representing thousands of degrees of freedom by only a
handful of normal modes, also allows one to build a sound
analytical model because each substructure can be con-
veniently checked for accuracy before assembly. Fur-
thermore, equation size that the computer has to handle at
one time can be further reduced, and the type of interface
between the substrucures can be altered without having to
recalculate a new set of modal coordinates. Component mode
synthesis is used extensively in the aerospace industry for the
calculation of the undamped natural frequencies of large air-
frame structures. Hurty [9] and Craig, et al. [10} are among
the earlier investigators. A summary on component mode
analysis was presented by Hou [11]. Experimental extraction
of undamped modes and the use of a ‘‘building block’’ ap-
proach were investigated by Klosterman [12]. In most ap-
plications, the substructures are required to share common
degrees of freedom at the interconnections of the sub-
structures. Therefore, a set of constraint equations is
necessary to determine a reduced modal equation of motion.
In rotor systems, a similar but different problem is usually
encountered. Interface between substructures consists of
bearings, seals, and flexible supports that are themselves
elastic. When there is no common degree of freedom being
shared by the substructures, flexible connections can be in-
troduced simply as generalized damping, stiffness, and forces
into the modal equations. This procedure is exemplified in the
analysis of a linear rotor-casing system using undamped
modes [5]. Childs started with two sets of casing modes in the
two asymmetric planes. Together with the rotor free-free
modes, the undamped modes of the rotor-casing system (i.e.
the free vibration modes of the total system) were obtained
using component mode synthesis. The system modes were
then used to develop the system modal equations with the
added damping. The total number of generalized coordinates
is equal to the number of undamped component modes
originally used.
In this paper, a systematic approach to establish the modal

equation of motion from component modes is presented.
Here, it is built directly from the component modes of the
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substructures; therefore, the extra step involved in computing
the system undamped mode (as it is done in [5]) is eliminated.
The scheme is completely general and not limited to any fixed
system configuration.

Theory

A component mode analysis starts with dividing the system
into a number of substructures or subsystems. There is
generally no constraint on how large a portion of the total
system that each subsystem represents. For example, a
subsystem may include all possible degrees of freedom in a
rotor shaft. Alternatively, the same rotor may also be
represented by three subsystems: one for the coordinates in
the two lateral planes, one for torsion, and one for axial
vibration. The undamped orthonormal mode shapes and
eigenvalues of each subsystem are obtained by omitting all
interconnecting elements and damping. (The associated
eigenvalue problem may be solved by the transfer matrix
method for all rotors and beam-like structures. More com-
plicated structures may be treated by the finite element
method.) -

For a subsystem consisting of a linearly elastic nonrotating
structure, the stiffness matrix is always symmetrical. The
eigenvalue problem is

[817 IR, 1] = [w,?] @)
And for a subsystem consisting of a rotor, the stiffness

- matrix is generally asymmetrical due to internal friction and

asymmetric bearing "stiffness. The usual approach is-to

. separate it into a symmetric part and an asymmetric part [5-

7]. Only the symmetric stiffness part is used in the evaluation
of the undamped component modes. The asymmetric part is
added to the modal equations at a later stage. Following this
approach, one has the choice of either the free-free rotor
modes, containing the shaft stiffness alone, or the rotor-
bearing modes, containing both the shaft stiffness and the
principal bearing stiffnesses. In the first case, the eigenvalue

- problem for the free-free rotor modes has the same form as in

equations (1) to (3). In the second case, identical modal
characteristics are used in both lateral planes to minimize the
amount of computations. Hence, the mean bearing stiffness
in the lateral directions is considered; the eigenvalue problem
becomes: ’

[Kuud + (K]
M)+ [ 1K1+ — 2] (x) =10) @
with the orthogonality, | S
[4171M.1191 = 1] ©®)
(817 [1K ] + [K,, 1(]
(817K, )[] + = — =l ©

2

The modal transformation for the rotor in the lateral planes is
therefore given by,

M, ]{%) + [K,]{x} = (0) 1
and the orthogonality may be expressed as
(017 (M, 1(¢]=[1] 2
Nomenclature

e = viscous damping coef-
ficient (T)
e, = unbalance eccentricity
J,,Jr = polar moment and
transverse moment of
inertia of a disk (ML2)
Re[ ] = real part of the complex
quantityin[ ]

X, Y, x,y = lateral displacements (L)
x,y = velocities in x and y
directions (L/T)
X, ¥ = accelerations in x and y
directions (L/T?)
Z,z = axial displacement (L)
a, B = phase angle of unbalance

in lateral and rotational

coordinates

dry friction loss angle

9 = rotating coordinate with
vector in the Y direction

¢ = rotating coordinate with
vector in the -X
direction

7 = disk skew angle

{, = viscous modal damping
ratio

¢y = torsional coordinate with
vector in the Z-direction

w = frequency of harmonic
vibration (1/T)

Q@ = rotor spin speed (1/T)

Q = rotor acceleration (1/T?)

™
)

Matrices
S [C] = system damping matrix
[CiLIC,,L[Cy] . . . etc = bearing damping matrices

[c] = modal damping matrix
[€]% = modal damping due to
interconnections
[/:), [/,] = transverse and polar
-~ moment of inertia
U

unity matrix

system stiffness matrix
bearing stiffness matrices
symmetric stiffness
matrix

o

(X1
[Kxx]v[Kny[Kxg]) . e 'CEC
(K]

[£]

= modal stiffness matrix
[K1? = modal stiffness due to
interconnection
[M] = system mass matrix
[m] modal mass matrix

Zero matrix
generalized coordinates in
subsystem i
{g},{q},{g) = generalized displacement,
velocity, and acceleration
vectors
[#¢] = orthonormal eigenvector
. matrix
[«2] = undamped eigenvalue
diagonal matrix for rotor
free-free modes or
structural modes
[w}] = undamped eigenvalue
- diagonal matrix for rotor

[0]
{qg?)

modes including bearing

stiffness )
indicates diagonal matrix
transpose of matrix [ .

—_
—
~
o

[ Jand { }
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{x) [¢] [0] {q.) and for a flexible rotor (treated as a subsystem containing
‘ both lateral planes),
= 7
| @ aloa?]  blw,?] [ws?]  [0]
{y) [0] [¢] {a,) (2] = + 14
The shaft flexural stiffness is now implicit in the mode shape —blwy?] alws?] [0] [wg?]
and conveniently expressed by the eigenvalues. Axial and :
torsional vibrations of the shaft that are not coupled to the [w4?] [0]
lateral shaft motion may be treated by equations (1) to (3) and A
added to equation'(7) in the generalized coordinates. [d1@ =e 15)
Assembly of Modal Equation. A global model equation [0] [w4?]
consisting of w subsystems is shown below.
T [0 ) gy where
0 (@) _ ! :
> = Jree 1o
b=ae+efd amn
[ [ (g™
L o | gy )
_ [C](”) [c](IZ) “ s {q'(l) ] NV
[c](ll) [c](zz) {4(2) }
N J >
[c](w-l,w—l) [c](w—l,w) ‘q'(w-l)]
! [e] >0 (e L g™y
[ K ke 10 @ Yy (U9 )
K% [k (a®) (@)
+ < . -= < . > ®)
[k](w-l,w—l) [k](w—l.w) {q(w-l)] {f(w—l)}
L [K) =D K L g™y ) L e

The above equation has been partitioned into submatrices.
Each of the diagonal submatrices is square and has the
dimension equal to the number of normal modes employed in
the corresponding subsystem. The off-diagonal matrices
represent the coupling of the subsystems due to the in-
terconnecting elements. The stiffness and damping sub-
matrices in equation (8) can be. expressed as. the summations
of two terms:

The effects of internal friction are represented in the above
equations -by the dry friction loss angle ¢ and the viscous
friction coefficient e (see Appendix). When the free-free shaft
modes are used, [w4?] and [wp?] in equations (14-15) are
defined by

[wa?]=[ws?] (in equatlon (3)) o (18)
[wBZ]-—[O] o i (19)

[k]9 =5U[w2](ii) + [k](u) T (9) Otherwise, when the bearing: stiffness is- . included in :the

(19 =51 A +[¢ 19 i R (10) normal modes (as in eqliatlon (4)2, they become "

where [[“’;T]K[“; —p{I](_ [wp’] , (20)
e +

T [wg?] = ¢ [[Kx wllle] - (21)

5,-,' = (11) . Thelinearly elastic elemems ormtted in the undamped mode

. 1, i=j. y calculation contribute to the coupling matrices [£]%.and [c]¥

The f;rst matnx on ‘the right hand side @f equatlons (9-19)
for.ar nonrotating ; flexible *structure .is- determined, by - the
subsystem* eigenvalues: (equatlons (3,.6)) and the agsocnated

in. the second term of equations (9 10).. :l-‘ypxcally, .these
elements consist of the bearmg stiffness and dampmg,

* gyroscopic moments, and rotor ‘acceleration. To aid in for-

structural modal dapgping, - . :» Y n]mg (k1% and [c]?, it is advantageous to a551gn a number to
[wZ](") = [wSZ](n) LPTE A TV G S '(172)
. - Lt e s ) : The viscous damping ratio-§; for ach mode 1s related to the viscous
[@1¥) = [2%_(.05](")2 e ¢ &) * damping coefficient by ¢, = e w,/2.
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Fig. 1 Linearly elastic connection types in component mode syn-
thesis (* Figures show /=] and o=p) -

every DOF (degree of freedom) in each subsystem. Modal
expansion matrices are used to establish the equivalence of the
elastic elements in the modal coordinates. A linear element
connecting the k" degree of freedom in subsystem / and the
¢'h degree of freedom in subsystem j has the following modal
expansion.
Mle P ={b V... ..

mxn

Sem ) (00 Vb P . .. S @2
where
¢, = deflection at the r* degree of freedom in the st
mode of subsystem f

m,n = number of modes used in the subsystem i/ and
subsystem j respectively.

All linearly elastic elements may be generalized into four
distinct linking types (or combinations of these types) as
illustrated in Fig. 1. Each link consists of a stiffness coef-
ficient K and a damping coefficient C.

Direct Link. This link represents a linear element con-
necting the £ DOF in the /™ subsystem to the stationary
ground. The contributions in the modal stiffness and damping
are:

AR 0 =K @3)
Al¢] @ =CITIY 24

Cross-Coupled Link. In this link, a coupling forcé is in-
duced at the k™™ DOF in the i*" subsystem by the motion at the
£ DOF in the /i subsystem. This type of link can be found in
dynamic components involving a fluid (e.g. fluid-film
bearing). The modal contribution consists of:

A[K] @) =K[T§p 295)
Alé] @ = (26)

Intermediate/Direct Link. This link consists of an elastic
element interconnected between the £t DOF in the /' sub-
system and the ¢'" DOF in the ji* subsystem. The contribution
to model stiffness is:

A[K] @ = KT (27)
ARl W) =K[T]§) (28)
A[K] ¢ = KT8 ) (29)

- aa - - Py T
AR 6 = — K = [ a1 | (30)
nxm

The contribution to modal damping is computed by replacing
[£] by [c] and K by C in the above expressions.

. Intermediate/Cross-Coupled Link. In this link, equal and
opposite forces are developed at the ™" DOFin the jt* sub-
system and the st DOF in the p" subsystem due to the
coupling effect of the relative motion between the k™ DOF in
the /" subsystem and the ¢* DOF in the o subsystem. It is
equivalent to a cross-coupled link connecting two pairs of
DOFs. An example of this is the cross-coupled dynamic
coefficient of a journal bearing installed intermediately

between two concentric rotating shafts. The stiffness K

contributes to:

A[K] U =K[T)g) 3an
Z;] P = K[I) (32)
uAX[;c—] U0 = — KT (33)
:A:[:I:.] #) = —K[T1$Y (34

Again, similar expressions are applicable for computing the
contribution due to damping by replacing K with C in the
above equations.

The total effect due to linearly linking elements is the sum
of all the individual contributions. (For example, a fluid-film
bearing mounted in a rigid housing is representable by two
direct links, and two cross-coupled links between the shaft
and the ground.)

The gyroscopic forces associated with a rotor represent
additional modal contributions. This is dealt with in a similar
manner using modal expansion. For each pair of angle DOFs,
k" DOF in subsystem i and ¢ DOF in subsystem j, that has
polar moment of inertia along the rotor axis,

stk @ = T2 g G9)
S, KL
Ay w0 = 22 [r = - [tk | 36)
Ale] 9 =J, P Q)
| .
Ale] ) =~ U, TP =~ [afa | ()

Normally, the cross-coupling is between the ¢ DOF and ¢
DOF (see Appendix) in the same subsystem such that.i = j.
(An exception is when vibrations in the x-z and y-z planes are
treated as separate subsystems.)

Finally, summing up all the foregoing modal contributions,
the second term of the modal stiffness matrix in equation (9)
fori, j=1towis:

sum sum
KD = Y ARD + Y, AW " (39)
over alt over all
elastic gyroscopic
links links

The corresponding damping matrix in equation (10) is ob-
tained by replacing [£] ) by [¢ ]¥ in the above equation.

- Modal forces are related to the actual forces acting at the
nodes according to the mode shapes. For a forcing function F
existing at the k* DOF in the i subsystem, the resulting
modal forces are

A)l(.lf(") ) =100 P )T (40)
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This expression is used to expand concentrated forces due to
unbalance, disk skew, or nonlinear forces at any of the nodal
degrees of freedom. The real displacement at the k" DOF in
the ™" subsystem at any given time is:
" =(off of). . .o} (g} (41)
Hence, it is shown that the governing equation of a complex
rotor system may be expressed in the generalized coordinates
by adding up the contributions of all the linearly flexible links
to the basic uncoupled modal equation. Once the governing
equation is established, critical speeds, stability, forced or
transient responses may be solved in the modal coordinates.
The final results can be transformed back into real coor-
dinates by equation (41). Note that in nonlinear transient
analyses, it is usually necessary to transform back and forth
between the real and the modal coordinates during com-
putation of the nonlinear forces.

Applications

The theory is applied to two high-speed turbomachines; (1)
a two-spool aircraft gas turbine engine, (2) Space Shuttle
Main Engine liquid oxygen turbopump (SSME HPOTP).

Two-Spool Aircraft Engine

Figure 2 represents a computer model of the two-spool gas
turbine engine. The engine consists of an inner core rotor
called the power turbine, which is supported by two main
bearings located at the shaft extremities. There are two in-
termediate differential bearings (FDB and ADB) connecting
the power turbine to the gas generator rotor. The gas
generator is supported principally by four bearings. In this
engine design, a squeeze-film damper bearing is incorporated

TURBINE END

T 7 1

Fig. 2 Two-spool aircraft turbine engine lumped parameter computer
model (PT - power turbine rotor, GG - gas generator rotor, FDB - front
differential bearing, ADB - aft differential bearing, D - damper bearing)

GAS GENERATOR SPEED = 15 000 r/min
POWER TURBINE SPEED = 17 000 r/min

a O
Ug = 0.0 “p = 25 gecm € Turbine 0° ,

40

20

0.0

Y DISP. ( pm )

N

~40 -20 0.0 20 40
X DISP. ( um)

(a) CYCLE 1 - 10

at the No. 3 bearing location to reduce turbine vibration
amplitudes and bearing forces.

The model, which has a total of 38 nodes and 152 degrees of
freedom, is considered as being composed of two subsystems;
namely, the gas generator rotor, and the power turbine rotor.
The component modes of the rotors are obtained in-
dependently of each other by omitting the effects of disk
gyroscopics, the squeeze-film damper, and the two intershaft
bearings. To keep the computer time requirement within
reasonable limits, a total of 12 component modes containing
two gas generator component modes and four power turbine
component modes in each lateral plane are used. This includes
all undamped component modes that are below 500 Hz
(30,000 cycles per minute (CPM)).

The first part of this application is to compute the transient
response of the gas turbine due to a suddenly applied un-
balance in the power turbine rotor under steady-speed
operation. The gas generator is taken to be balanced and
operating at 1571 rad/s (15,000 r/min). The power turbine is
operating steadily at 1780 rad/s (17,000 r/min) with zero
vibration level when an unbalance distribution is imposed.
This particular unbalance consists of 25 g cm each at the
second stage turbine and at the rotor mid-span at = rad (180
deg) apart from each other. In this case, the system is assumed
to be linear. Figure 3 shows the orbits observed at the second
stage gas generator turbine for the first 10 and the last 15
cycles in a total of 40 cycles of simulation. Although the
steady-state orbit is not yet completely developed after 40
cycles, the magnitude and the phase angle of the vibration are
quite established. A comparison of this result with an in-
dependent steady-state response calculation has indicated
excellent correlation. The maximum response amplitude
observed during the initial transient motion is about two times
the size of the steady-state orbit.

Due to the use of an improperly designed damper, a
nonlinear “‘jump’” was observed in the gas generator
vibration during engine tests. A study is presented here in
which the jump phenomena is simulated. The squeeze-film
damper has a length of 11 mm, a diameter of 129 mm, and a
radial clearance of 0.1 mm. A retainer spring of 2.15 x 107
N/m is used to center the outer raceway of the rolling element
bearing inside the damper. The diaphragm which supports the
squeeze-film damper bearing is taken to be rigid. The bearing
force is calculated with the short bearing theory in the
simulation. The power turbine rotor is assumed to be

25 gecm @ Midspan 180"

)
-

20

0.0

Y DISP. ( um )

-20

X DISP. ( um)

{(b) CYCLE 26 - 40

Fig. 3 Linear transient orbits of the gas generator second stage
turbine due to coupled power turbine unbalance (— direction of rotor

precession)

Journal of Engineering for Power




POWER TUKBINE SPEED = 14 000 t/min
v, =

100

50

(um )

Y DISP.
0.0

-50

Cum)

Y DISP.

50 g-cm @ Turbine 0° , Ug = 50 g-cm @ Turbine 0° at Time = 0

=3
=1
-

My

50

0.0

=50

[
\_

-100

X DISP.

¢ um )

(a) GAS GEFNERATOR SPEED = 9 000 r/min
0.08 SECOND OF STMULATION

-100 =50 0.0

. 50

X DISP. ( um )

(b) GAS GENERATOR SPEED = 11 000 r/min
0.064 SECOND OF SIMULATION

100

v

50

(um)

"]

Y DISP.
0.

50

4

\W

S
v

(um )

Y DISP.

100

50

0.0

=50

50 100
(um)

-100

-100 -50 0.0

X DISP.

(c) GAS GENERATOR SPEFD = 15 000 rymin
0.064 SFCOND OF SIMULATION

~100

=50 0.0 50 100

X DISP.

-100
Cum)

{d) GAS GENERATOR SPEED = 17 000 r/min
0.064 SECOND OF STMULATION

Fig. 4 Nonlinear transient rotor orbits at squeeze film damper bearing
showing nonlinear jump (— direction of rotor precession)

operating at 1466 rad/s (14,000 r/min) with an unbalance of
50 g cm at the turbine end. The gas generator rotor has 50 g
cm of unbalance at the second stage turbine.

The gas generator rotor speed is increased from 943 rad/s
(9000 r/min) in steps of 209 rad/s (2000 r/min) until the jump
pheriomena occurs. At 943 rad/s (9000 r/min), the transient
motion is started initially at zero displacement and velocity.
For each speed, the nonlinear transient is calculated for about
10 gas generator rotor revolutions. The starting conditions at
rotor speeds other than the initial speed of 943 rad/s (9000
r/min) are taken to be equal to the final displacement and
velocity computed at the end of the simulation cycles for the
previous gas generator speed.

Figure 4 represents the transient orbits of the gas generator
rotor at the damper location as the gas generator is brought
up in speed until the jump phenomena occur. The initial
transient rotor motion at 943 rad/s (9000 r/min) is shown in
Fig. 4(a). The orbits are calculated for about 11 gas generator
rotor revolutions after it is released with zero velocity from
the bearing center. The timing mark is synchronized with the
unbalance vector in the gas generator and is shown as an
asterisk at the end of each gas generator rotor revolution.
Because the rotors are operating at different speeds, the
unbalance forces have two frequency components. Therefore,
a response pattern repeating itself for every revolution is not
observed even when the system has reached steady-state
operation.

6

BEFORE AFTER

Fig. 5 Experimental gas turbine engine casing vibration orbits before
and after nonlinear jump phenomena [13]

Figure 4(b) shows the nonlinear rotor motion at the damper
location at 1152 rad/s (11,000 r/min). Limiting orbits of large
amplitude are formed very rapidly in less than one gas
generator revolution. The damper is seen to be operating at
eccentricities in excess of 0.9 of the radial clearance. A
fluctuation of the phase lag angle about 45 deg persists
throughout the simulation at this speed. At 1571 rad/s (15,000
r/min), a case of an extremely overloaded damper is observed
in Fig. 4(c). The rotor appears to orbit in a large circle with an
eccentricity ratio of about 0.95.

" Finally, Fig 4(d) illustrates the nonlinear jump phenomena
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CASING RESPONSE AMPLITUDE

HOT GAS
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Fig. 6 Space Shuttle Main Engine oxygen pump computer simulation
lumped parameter model (K, - pump bearing, K, - balance piston, K; -
turbine bearing, K - turbine seals)
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Fig. 7 Laterai and axial steady-state response amplitudes at casing
prebumer pump end due to main pump impeller unbaiance

at the gas generator speed of 9780 rad/s (17,000 r/min). It is
seen that the rotor orbit is reduced to about a quarter of its
initial size within five revolutions. The jump in the amplitude
is accompanied by a shift of the timing mark to align ap-
proximately with the negative x-axis. This phase angle change
is important as it indicates that the gas generator rotor has
rapidly passed through the critical speed of the gas generator
mode due to the sudden reduction in the effective damper
stiffness which resulted from a smaller orbit size.

Figure 5 represents the experimentally measured vibration
orbits of the engine casing in a test run taken before and after
the jump occurs. The appearance of these orbits seems to be
similar to those obtained in the transient computer
simulation.

Space Shuttle Oxygen Pump

In this application, the linear steady-state unbalance
response of the space shuttle oxygen pump is computed.
Figure 6 shows a computer model of the oxygen pump
assembly. It consists of a single rotating shaft mounted in two
pairs of flexibly supported rolling element bearings inside a
flexible casing. Due to the flexibility in the hot gas manifold,
which serves as the only major casing support, a number of
rotor/casing resonsant modes are created. .

During the development of the oxygen pump, ac-
celerometers were placed on the pump casing to monitor the
radial and axial vibration levels. Due to the limited space
available inside the test pump, no proximity probes were
installed to measure the rotor motions directly. The lack of a
measurement of the rotor shaft amplitudes has made it ex-
tremely difficult to determine whether a pump failure oc-
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Fig. 8 Bearing forces in the x-direction due to main pump impeller
unbalance

curing at about 2618 rad/s (25,000 r/min) was caused by a
resonant mode of the rotor or a resonant mode introduced by
the flexibly mounted casing. It was intended that the un-
balance response analysis would aid in the identification of
this failure mode.

The pump is considered to be composed of two sub-
systems — the casing and the turbopump rotor. Each node in
the casing structure is taken to have six degrees of freedom.
The casing modes with the hot gas manifold are calculated
individually in the x-0-z lateral axial and the y-¢¥ lateral
torsional planes. A total of four modes in each plane are
included. The frequency of the lowest mode in each plane has
been verified by experimental data. The rotor modes are
computed using free-free boundary conditions. The highest of
the eight modes used at 5672 Hz (340,300 CPM) is more than
ten times the full power speed of the turbopump.

In the rotor-flexural mode calculation, the axial and tor-
sional motions are not considered. The axial rotor coordinate
is accounted for in the modal analysis by the addition of a
rigid body rotor axial mode. Each node in the rotor,
therefore, has five degrees of freedom.

In this system, a total of 289 degrees of freedom is
represented by 25 generalized coordinates. Five percent modal
damping, based on test data, is applied to each of the casing
modes. The balance piston has a stiffness of 36.7 w?> N/m
(0.21 «? Ib/in.) and is taken to provide 10 percent of the
critical damping in the axial direction. It is assumed that each
pair of bearings produces 7.0 X 10° N/mt0 1.57 x 10® N/m
(0.4 x 10° 1b/in. t0 0.9 x 10° 1b/in.) of stiffness (depending
on the rotor speed), and 876 Ne+s/m (5 Ibss/in) of damping.
An unbalance of 25 g cm is placed at the main pump impeller.

Figure 7 represents the calculated casing vibration at the
pump end. The vibration modes have been identified in a
critical speed calculation according to the proportion of strain
energy in the rotor and the pump casing. It can be seen that
the highest response amplitude is predicted at the second rotor
mode of about 2870 rad/s (27,400 r/min). Axial vibration in
this mode is due to the coupling of the axial and lateral forces
at the hot gas manifold. The axial-lateral mode at 1822 rad/s
(17,400 r/min) does not appear to be particularly sensitive to
this unbalance.

The computed forces transmitted to the bearings are
presented in Fig. 8. A serious threat to the safety of the pump
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is uncovered at the second rotor critical speed where the
magnitudes of the forces increase to as high as 25 kN (5600
Ib.). Vibrations due to casing flexibility, although readily
detected on the casing, do not generate much forces at the
bearings.

The result in this analysis indicates that the second rotor
mode is a potential danger to the operation of the oxygen
pump and could have been responsible for the vibration
problem encountered in the test pump. Further testings are
now underway to examine this possibility.

Summary and Conclusions

A procedure was developed for the dynamic analysis of
large flexible rotor systems with the component mode
method. This procedure does not restrict the form of the rotor
model. Yet it keeps the size of the governing equation
manageable. Because a large system can be divided into a
number of much simpler subsystems, the representative
component modes can be easily and accurately computed. If
desired, these modal informations may be verified by ex-
perimental testing.

A two-spool aircraft gas turbine engine equipped with a
squeeze film damper bearing and the Space Shuttle Main
Engine oxygen turbopump were used to illustrate the
capability and versatility of the component mode method. In
particular, a transient vibration simulation of the aircraft
engine and an unbalance response analysis of the turbopump
were presented. The results in both applications were
generated by a master computer program. This program has
been successfully employed for analyzing the stability, the
synchronous response, and the transient response of generally
connected multi-component systems.
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APPENDIX

The equation of motion for a rotor [14] is stated without
derivation here. The coordinate system for this rotor is shown
in Fig. 9. Axial and torsional motion in the z direction are
excluded. The effect of internal friction has been added to the
governing equation from [7-8]. Forces due to unbalance, disk
skew, and rotor acceleration are included in this formulation.
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