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Comparison of the Unbalance
Responses of Jeffcott Rotors With
Shaft Bow and Shaft Runout

The unbalance response of a Jeffcott rotor with shaft bow and/or runout was
theoretically and experimentally studied. Bow refers to a rotor which is warped;
bow is a function of running speed. Runout refers to electrical or mechanical
asymmetrics of the shaft and is not dynamical. Included in the theoretical model is
the capability of low-speed response compensation, such that the response at low
speed can be vectorially subtracted from the total response at any rotational speed.
Responses of rotors with equal amounts of bow or runout are shown to be
significantly different in both Bode and Nyquist forms. Using low speed com-
pensation is shown to ““correct’’ the unbalance response of a rotor with runout to an
ideal (unbowed - no runout) case. The amplitude response plot of a bowed rotor is
not corrected to the ideal response plot by the use of such compensation; however,
the shape of the phase response plot closely resembles the ideal case for most cases.
A small scale lightly damped Jeffcott rotor rig was also tested. The magnitude and
angular position of the shaft bow were parametrically varied. The vibration data
Jrom the rotor tests were plotted using a synchronous tracking filter by two
methods: both not using and using low speed compensation. Experimental data
agree excellently with predictions for a bowed rotor for all cases and differences less

than 8 percent were usually found.

Introduction

Knowledge of the synchronous amplitude and phase angle
and total amplitude of vibration is of utmost importance in
balancing and understanding most rotor applications. In-
ductance or eddy current probes are one of the most common
instruments used to detect shaft vibration in rotating
machinery. Rotor bow and shaft runout are two phenomena
that affect the observed response of a rotor. In this paper,
differences in the responses due to these two phenomena are
identified, and methods of experimental ‘‘runout com-
pensation’’ are studied. Both theoretical predictions and
experimental data are presented.

Displacement probes and the related processing equipment
are used for three basic purposes. First, when a system is
running on line (such as a power generating unit), vibration
monitors are needed as safety devices, such that if the rotor
vibratory amplitude grows, alarm and danger warnings can be
initiated, and, under many conditions, the system will be
automatically shut down [1]. Second, by measuring the
vibrational response of the rotor at various speeds, one can
determine the angular location and magnitude of a rotor
unbalance, such that the system can be balanced [2,3]. Third,
by analyzing the vibration response as a function of rotor
speed, one can determine important system parameters, such
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as amplification factor or damping [4], which are independent
of rotor unbalance.

The simplest rotor that can be studied is one with a per-
fectly straight, round, and angularly uniform material shaft.
Unfortunately, such a rotor rarely exists in practice. Any
shaft material nonuniformities modify the observed motion
of the shaft due to the inductance principles of the probes. For
example, at very low speeds where no vibrations exist, a probe
will measure apparent shaft motion due to this effect. This
effect is termed electrical runout and is not a function of shaft
rotational speed. A second similar effect is due to out-of-
roundness or scratches on the surface of the shaft. This is
termed mechanical runout and also is not a function of shaft
speed.

The third deviation from an ideal rotor is due to a bowed or
warped shaft. Several applications in which shaft bow is
important in the balancing of the rotor are gas turbines,
nuclear reactor water pumps, steam turbines, and the space
shuttle main engine. Such bow can result from an extended
gravity sag, thermal distortion, a large previous unbalance, or
a variety of other reasons, and the bow is a function of shaft
speed.

Previous to this time, several authors have theoretically
examined and discussed the problem of a warped shaft [5-9].
Nicholas, et al. [5], indicate that the rotor bow can
significantly affect the Bode response of a rotor, and the
effect is a function of rotational speed.

Some studies have also been presented in which a rotor with
a bowed shaft was.balanced experimentally {10,11]. However,
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experimental results have not yet been presented in the open
literature in which the behavior of a bowed rotor is studied.
The theoretical results in reference [S] have not been verified
by an experimental program. .

In practice, one can observe a shaft vibration at low speeds.
In many cases, one cannot distinguish the contributions from
the three nonideal effects previously described. For example,
a probe may be located ‘‘deeply’’ in a machine, such that
using a dial indicator to determine the mechanical runout at
the probe location may not be possible. The resultant
measured vibration vector is a sum of the three vectors from
electrical runout, mechanical runout, and shaft bow. An
instrument which is used to cancel the first two nonideal
contributions, is termed a ‘‘runout subtractor.”’ This in-
strument subtracts a constant vibration vector from the
monitored shaft vibration at all speeds. The constant vector is
defined as the vibration vector measured at low speeds, where
low means at speeds sufficiently low that dynamic effects are
negligible. Unfortunately, since all three contributions are one
sum, a runout subtractor compensates correctly for the first
two, but introduces an error by subtracting a constant vector
for the rotor bow. The response of a rotor to shaft bow is a
function of speed. At low speed, the response is equal to shaft
bow. However, at a rotor critical speed, the response to bow
can be more than ten times the bow itself, and at high speeds,
the response is nil regardless of bow [S]. Thus, by subtracting
a constant vector, an error in the measured response is in-
duced, particularly near the critical speed and at higher
speeds.

The intentions of this paper are threefold: (1) to identify the
differences between the observed vibratory responses of
bowed rotors and the observed vibratory response of rotors
that have either mechanical or electrical runout, (2) to identify
problems associated with using runout subtractors with
bowed rotors and to estimate the inaccuracies, and (3) to
present experimental data verifying the predicted response of
a bowed rotor [5]. A Jeffcott rotor is both modeled
theoretically and tested experimentally.

Theoretical Model of Rotor

The equations of motion of a bowed rotor have been
previously derived [5]. In this section, the model for runout
and runout subtraction will be described.

In Fig. 1, a basic Jeffcott rotor with a bowed shaft and with
an unbalance is presented. All phase angles are measured with

Nomenclature

y probe

reference
timing
mark

{_x probe

X.-»-F/ X

)

Fig. t Single mass flexible rotor with bowed shaft, end and side views

respect to a reference timing mark on the shaft. The shaft has
a residual bow of magnitude §, and phase angle ¢,. The mass
center of the disk is displaced a distance e, from the shaft
centerline which results in a dynamic response as the shaft
rotates. The magnitude and phase angle of the dynamical
response are 8, and ¢, respectively. The magnitude and phase
angle of the combined electrical and mechanical runout are 6,
and ¢, respectively. Thus, the total observed response is

8=05,+5,+5, )

No gyroscopics occur since the disk always rotates in its own
plane. The shaft mass is considered negligible compared to the

A = amplification factor, /e, o, = influence coefficient due to unbalance vector and the

¢ = shaft damping compensated bow, (f2- timing mark

¢, = critical shaft damping, 2mw,; 2ieN) /(1 -2 +2iEf) ¢, = angle between the rotor

e, = unbalance eccentricity vector v = angle between the bow vector ° runout vector and the timing

f = frequency ratio, w/w, and the mass unbalance mark

k = sl}aft spring rate vector ¢, = angle between the bow vector

m = disk mass & = total response vector at the and the timing mark

x = horizontal shaft centerline center of the shaft ¢, = angle between the rotor
displacement %, = runout vector ’ response to mass unbalance

y = vertical shaft centerline 5, = bow vector vector and the timing mark
displacement 8, = response to the mass un- w = rotational speed

z = complex shaft centerline balance vector and the bow we = rotor critical speed, vA/m
displacement, x + iy vector - ’

a,, = influence coefficient due to { = damping ratio, c/c, Subscripts :
mass unbalance, f2/(1— ¢, = predicted measured damping ¢ = withlow sgeed compensation
£ 4208 ratio ce = compensation error term

a, = influence coefficient due to ¢ = phase angle between the shaft cr = critical speed
runout = 1 centerline response vector and 0 = evaluatedatf =0

o, = influence coefficient due to the timing mark Superscripts
bow, 1/(1 —12 +2i¢f) ¢, = angle between the mass — = nondimensionalized by e,
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rigid disk mass, and both the shaft and disk rotate with
constant angular velocity, w. The supports are taken as rigid.
Using the equation of motion for the simple rotor with
mass unbalance and shaft bow, Nicholas, et al. [5], obtained
the following steady state nondimensionalized rotor response
as a function of rotor speed.
S,e i + fle=i%m
1-£242i
where all of the parameters are defined in the Nomenclature.
Consider a shaft with electrical and/or mechanical runout.
This runout is represented as a vector, é,, at a phase angle of
¢,. The runout vector is also nondimensionalized by the
unbalance eccentricity (5§, = 4,/e,). As was mentioned
earlier, this runout vector is constant and independent of
shaft rotational speed. Using the principle of superposition,
this constant response due to runout may be added to
equation (2) for steady state response yielding

5,6~ + fle~i¢m

1-2 42
For convenience, let y = ¢, — ¢,,. Next, equation (3) can be
put in the form:

Z=a,8,e % +a, e m +a,b,e "% 4)

=

@

i= +8,e" %0 3

where «,, a,,, and a, are the influence coefficients for the
bow, mass unbalance, and runout and are defined in the
Nomenclature.

Separate Z into real and imaginary components, £ = 2, +
iZ;, to obtain

. _ (§,co80, +f2c0s¢,)(1 = f*) = 2{f (5,5ing, +/*sing,, )

i =7V + @)’

. [ (8,sing, +f2sing,, ) (1 —f2) + 21/ (8,c08¢, +f2cosd,, )
o - + QY

The shaft amplification factor and phase angle are

A=Vg2iz2 (6a)
and
é=tan"![z;/zZ,] (6b)

As was stated earlier, a runout subtractor or compensator
measures the rotor ‘‘response’’ vector at slow roll, i.e., speeds
sufficiently low such that shaft dynamics are not encountered,
and subtracts this constant vector from the rotor response at
all other speeds. Thus, for the case of an unbowed shaft, it
compensates for shaft runout, thereby presenting the response
for the rotor as if it had only unbalance with no runout. To
understand what the output from a compensator represents
for the observed response of a bowed rotor at slow roll,
substitute f = 0 into equation (3)

Gy =567 i% + 5,070 7
z, .= 5,cosd, +6,cose, (8a)
Z lo = —§,sine, — 5, sind, (8b)

Equations (7) and (8) are the quantities the compensator
subtracts from the total response at all other speeds. Define zZ,
as the total response of a bowed rotor compensated for
electrical/mechanical runout
. . . berqflem
2. =i-p=———
¢ 0 1-£242if
Rearranging and combining like terms in equation (9) yields

—§,e i ©)

Journal of Mechanical Design

+ 6,c08¢,

+6, sin¢o]

. _ (P2t be " +fle~i*m

Z 10
¢ 1-f242i 10

which can be put in the form
Z.=a,.5e " +a,e¥m (11)

where o, and «, are influence coefficients for the com-
pensated bow and mass unbalance. For large values of f, «,.
approaches «,, indicating the responses due to a com-
pensated blow and an equal unbalance eccentricity are equal.

Also, one can define Z, 1. and Z; | . as the real and imaginary
components, respectively, of the response of a bowed rotor
with runout after compensation.

&| =%-%| =
(5-,-COS¢,. +_fZCOS¢m)(1 _j‘l) - 20‘( (S_,-SinQS,. +ﬁSin¢m)
1-+2mn?
+8,c08¢, —[5,c08¢, +8,c05¢,] (12a)

N [ (8,sing, +/2sing,, )(1 —f*) +24(§,c089, +2c05¢, ) ]
(- + QY

+ 6,8in¢, — [ — §,singp, — 8,sine, ] (12b)

These values may now be substituted into equation (6)
yielding A, and ¢,., the response amplitude and phase after

(5a)

(50)

compensation. Upon inspection of the foregoing equations,
one can see that an error is introduced. Since shaft runout is
constant with speed, the subtraction of a constant runout
vector correctly compensates for this effect (i.e., the shaft
runout terms all cancel). However, since the response due to
shaft bow is not constant with speed, the subtraction of the
constant slow roll bow vector clearly does not adequately
compensate for this effect. Shaft bow terms remain in the
compensated rotor response equations. Carrying out the
subtraction in equation (12), the bow response terms that
remain may be called compensation error terms.

'—l___fz__ - 1]
a-y+e
__ 2¢f5,sing,
-+

N b 1]
A=+ 2N?

2¢6,cose,

a-A+Q?

Note that for low speeds (f = 0), these error terms are

negligible but become quite pronounced at speeds ap-

proaching the critical speed and higher. Thus, the response of

a bowed rotor with compensation does not represent the

response of a rotor with unbalance only. In the next section,
similarities and differences will be demonstrated..

For the foregoing equations, the response was found for

any value of ¢,,. For the remainder of this paper, the un-

balance vector, e,, has been assumed to be in line with the

Z,| =8,cose, [
ce

(13a)

| =- S,Sinq&,[

ce

(13b)
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Fig. 2 Response curve without compensation with { = 0.1 and §, =
1.00 for various -y values

reference timing mark, so that ¢,, = 0. This latter assumption
does not reduce the generality of the solution, since the timing
mark is an arbitrary reference point. For example, the actual
amplitude of response will not depend on the reference mark
location. Also, since y = ¢, — ¢,,, the angle, v, will be equal
to ¢, if ¢,, = 0.

Theoretical Results

In the previous section, a model for runout compensation
was developed. In this section, typical parametric studies are
presented. Synchronous response plots (hereafter called Bode)
and complex response plots (hereafter called Nyquist) from
both a bowed rotor and a rotor with runout are presented and
differences are discussed. Also, responses with runout
compensation are presented and discussed.

In Fig. 2, Bode response plots are shown for a bowed rotor
(6, = 1.00) with low damping ({ = 0.1) and no runout.
Results for five values of v are presented. In Fig. 3, Nyquist
forms of the previous plots are shown. Finally, Bode response
plots with constant compensation are presented in Fig. 4.

In Figs. 5-7, response plots for a rotor with only runout (§,
= 1.00 and ¢ = 0.10) are shown in the same fashion as the
bowed rotor responses (Figs. 2-4) for four values of ¢,. Thus,
the low speed response of this rotor without compensation is
identical to that presented in Figs. 2-4.

By comparison of Figs. 2 and 5, one can see several dif-
ferences in the Bode responses of a bowed rotor and a rotor
with runout with equal low speed responses. For example, the

4

6,00

4. 00
i

v- 165

-12.00 -10.00 -8.00 -6.00 . 7 . ; 6.00 8.0

2.00 -J0.00 -8.00

Fig.3 Nyquist response curves for { = 0.1.and §, = 1.00

maximum amplitude of a bowed rotor is strongly dependent
on v while the maximum response for a rotor with runout is
weakly dependent on ¢,. The minimum amplitude for a
bowed rotor is zero (y = 180 deg) and occurs at w/w, = 1.00,
while the minimum nondimensionalized amplitude for a rotor
with runout is 0.28 (¢, = 180 deg) and occurs at w/w, = 0.7.

The phase angle responses are also different for the rotors
(Figs. 2 and 5). For v = 0 deg and ¢, = 0 deg, the responses
are similar. However, for y and ¢, = 90 deg and 135 deg, the
shapes of the responses are different, particularly at low
speeds. For v and ¢, = 180 deg, significant differences are
observed. Particularly at w/w, = 1, a sudden shift of 180 deg
is shown for the bowed rotor, but no such sudden shift is
observed for a rotor with runout.

The differences can be seen also by Nyquist plots (Figs. 3
and 6). For the bowed rotor (Fig. 3), the response is nearly
circular as is the response for a simple straight shaft in a
lightly damped system. However, the sizes of the response
circles depend strongly on the value of . The responses at the
critical speeds are marked with symbols. The maximum
response is for 0 deg, while the minimum response is for 180
deg. On the other hand, since the response of a rotor with only
runout is simply the response due to unbalance plus a constant
vector, the sizes of the response circles in Fig. 6 are not a
function of ¢,.

The effect of constant compensation is to shift the low
speed response for each of the circles to the origin. For the
cases in Fig. 6, all four circles collapse to one circle. However,
for Fig. 3, five separate response circles remain because they
are of different radii. By examining the compensated Bode
plots for the rotor with runout (Fig. 7), one can see that all of
the phase and amplitude responses are identical to a simple
rotor (no bow, no runout) with unbalance ({ = 0.1). This is
termed the ‘‘ideal’’ case.

Three occurrences can be observed from the Nyquist plots.

(a) The responses were all circular.in shape. No ‘“minor”’
or ‘“‘inside loops’® were observed. These secondary loops
occur as a result of disk skew [12] or foundation resonances
[13], but never as a result of bow or runout alone. .

(b) Note that the Nyquist *‘circle’’ for the case of §, = 1.0,
v = 0 deg (Fig. 3) closely approximates the locus of points
representing the- critical speed responses for all values of «.

Substituting f = 1 and §, = 0 into equation (5) and
manipulating yields

Transactions of the ASME
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Fig. 4 Response curves with compensation for { = 0.1 and §, = 1.00
forvarious y values

32+ (F, +1/207=(5,/20° (14)

This is the general locus of points of the critical speed
response for a given value of {. Thus, the center is at the point
(0, —1/29) and the radius is (§,/2¢{). One should note that if
shaft runout is also present, the radius of the critical speed
response circle will be unchanged, but the center will be
displaced by an amount equal to the shaft runout vector.

(c) For a bowed rotor with §, = 1.00 and for cases of y
slightly less than 180 deg (say v = 169 deg), the net phase shift
as a rotor traverses a critical speed is approximately zero when
compensation is not used. However, if v is slightly greater
than 180 deg (say 190 deg, not shown for the sake of clarity),
the Nyquist loop encircles the origin which results in a phase
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Fig.6 Nyquistresponse curves for { = 0.1 and §o = 1.00

shift of approximately 360 deg. Such behavior has been

reported for a large scale test rig [14]. This is particularly

important since most rotors are balanced at the critical speed,

i.e., ideally §, = 1.00 and v = 180 deg [5]). However, prac-

tical limitations usuailv cause both §, and y to be slightly .
different from the ideal balance resulting in net 0 deg or 360

deg phase shifts in practice.

In Fig. 4, results are presented for the response of a-bowed
rotor with runout compensation applied. Results in Fig. 7
represent the response of an ideal rotor. Thus, by comparing
Figs. 4 and 7, several errors can be seen (which are also--
predicted by equation (13)).
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(a) At high speeds, the compensated amplitude response
does not approach the unbalance eccentricity (Z = 1.00); for
large values of §, (i.e., small values of e,), the “‘observed’’
amplitude response at high speed approaches §,. The bowed
rotor response with no compensation does approach unity,
however.

(b) The maximum amplitude response remains a strong
function of «.

(¢) The actual values of phase angle are approximately
correct only for v = 0 deg and w/ w,, greater than 0.7.

(d) The shapes of the phase angle curves are completely
incorrect for values of w/w, less than 0.7 for all values of «y
except 180 deg.

Of particular interest are the shapes of the phase angle
curves for the compensated bowed rotor (Fig. 4). For all
values of vy shown, the shapes of the phase angle curves for
w/w, greater than 0.7 in general closely resemble the ideal
phase angle curve. For example, if one has a phase angle
response plot, a typical method of ‘“measuring’ a system
damping is by the following, which is valid for a rotor without
bow or runout.

$m = 180/ [7ww (do/dw)) (15)

One can evaluate d¢/dw for the present method by two
techniques: (a) measuring the slope of ¢ versus w/w, as in
Fig. 4, or (b) by differentiating equation (6b) and sub-
sequently equation (12) for a compensated rotor, or equation
(5) for an uncompensated rotor. The latter method was used,
and the values of {,, which were obtained for ¢ = 0.1, §, =
1.00, §, = 0.00, and vy = 0, 90, 135, 169, and 180 deg are
presented in Table 1. Values of {,, were determined for cases
with and without constant compensation. In Table 1, one can
see that the measured values of { are very close to the actual
value of { (0.100) for the compensated responses. However,
the measured values of { are sometimes significantly different
from the true value of { for the responses with no com-
pensation. This is most easily understood by accurately
examining the slopes on the ¢ versus w/w, plot in Fig. 2. At
w/w, = 1.00, the slope for v = 135 deg is less than that for v
= 0 deg, for example, yielding a larger measured value of
damping.

W= wer

6

Table 1 Values of {, determined from Bode
diagrams; (¢ = 0.1, 5, = 1.00, 5, = 0.00)

L% No compensation With compensation
0deg 0.100 0.101
90 deg 0.111 0.101
135 deg 0.132 0.102
169 deg -3 =)
180 deg 0.100* 0.100

80 deg, w/w,. = 1.00; evaluated at y

*indeterminate at y = 1
= 1.01"

= 180 deg, w/w

600.00

) HHP.UO 480.00 SZP.OU 560.00
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Fig. 8 Response curves with compensation for { = 0.1 and §, = 0.5
forvarious y values
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One peculiarity of bowed rotor systems with §, = 1.00 is
shown in Figs. 2-4. Namely, for v = 169 deg, the amplitude
and phase responses are nearly constant with speed as shown
in Fig. 2. In Fig. 3, the response is a short line. Likewise, the
compensated response plots (Fig. 4) are approximately
constant with speed resulting in (dq&/a’w)w:wcr = 0. Thus, for
this value of vy almost infinite damping is measured. One
should realize that as { varies, the value of y for which A and
¢ are constants also varies. When §, = 1,00, 7 = 1.00 and f
= 1, one can show, by solving the real part of equation (3),
that this value of v is given by

y=sin~'(2£) (16)

For comparison, a second case is shown for a bowed rotor
with compensation. This is presented in Fig. 8 and is for §, =
0.5 and four values of . These curves can be compared to
Fig. 4 to determine the relative effects of §,. The amplitude
responses in Figs. 4 and 8 show the same trends. The rotor
with the largest value of §, shows the largest amplitudes (Fig.
4). Neither of these cases shows ideal compensation, although
the case with §, = 0.5 has the smallest errors as compared to
Fig. 7. The phase angle responses for §, = 0.5 are somewhat
similar to those for §, = 1.0; namely, the shapes of the phase
responses are almost ideal for w/w, greater than 0.7. For §,
= 0.5 and for w/w, less than 0.7, however, the shape of the
phase responses for v = 135 and 180 deg are significantly
different from those for §, = 1.0. Figure 8 indicates that the
slopes of the phase curves are approximately equal to the ideal
case at the critical speed. Thus, by using compensation, one
can once again accurately determine the system damping by
equation (15).

To summarize this last point, Fig. 9 is presented. In this
figure, the ratio, {/{,,, is presenied as a function of v for §,
= 0 and for two values of §, and {. Two curves are presented
in each part of the figure. The first is for a bowed rotor
without compensation, while the second is for a bowed rotor
with compensation. In most cases, the compensated responses
yield accurate values of {,,, i.e., {/{, = 1.0. Uncompensated
responses often yield significantly high values of ¢, par-
ticularly for large values of . In some cases, the compensated
results are in error. For example, in Fig. 9(a) ({ = 0.1, §, =
1.0), the value of ¢, for v = 169 deg is found to be infinite
since d¢/dw is zero as discussed earlier. Significant errors are
only observed for a narrow range of v in Fig. 9(a). For larger
values of ¢, the range of errors in  for compensated responses
increases. For example, in Fig. 9(b) (¢ = 1.0), the range of v
for which errors in measured damping are 50 percent or more
is from 0 to 130 deg. For such large values of damping,
however, one does not in general need an accurate value in
practice, since such machines are rarely encountered and if
they are, they are well behaved. For values of §, = 0.5 (Fig.
9(¢)) and 2.0 (not presented), the measured value of {(for { =
0.1) from the compensated response is very accurate (within 4
percent for all values of #). For these latter cases, one can
examine equation (11) and see that for large values of §,, the
term «,. 6, dominates, while for small values of §,, the term
a,, dominates. Thus, for either large (5, > 1.5) or small bows
(5, £ 0.7), the compensated response appears to be due to
strictly a mass unbalance for large values of f(f S 1). The
shape of the phase angle response curve is thus accurate for
these cases.

In all of the foregoing discussions and figures, the rotor was
assumed to either have bow and no electrical/mechanical
runout or vice versa. Several cases of combined bow and
runout were also examined but are not presented for the sake
of brevity. They did not, however, reveal any different
characteristics from those exhibited in Figs. 2-9. One should
realize that for a system with a combination of bow and
runout, when compensation is used, the runout portion is
compensated for correctly, and the bow portion is com-
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pensated for incorrectly as predicted earlier. For example,
consider a rotor with { = 0.1 which has a slow roll (f = 0)
indicated nondimensionalized vibration amplitude of 2.00 at
90 deg, of which runout is 1.00 at 90 deg and bow is 1.00 at 90
deg. If compensation equal to the slow roll vibration is used,
the observed response will be as in Fig. 4, v = 90 deg.
Namely, the responses are considerably different than the
ideal case (Fig. 7) and the differences are predicted by
equation (13). Also, the compensated response is much
different than the response of a bowed rotor with no com-
pensation and no runout (Fig. 2), particularly the phase.

Only a few typical cases are presented herein. These in-
dicate the particular differences for shafts with bow or
runout. Errors in using a runout subtractor for a rotor with
bow also have been demonstrated for these cases. Equations
were derived in the previous section whereby errors can be
predicted for any other conditions not studied herein.

Experimental Apparatus and Procedure

To demonstrate the accuracy of the theoretical results in
reference [5] and in this paper, the following experimental
analysis was completed. The experimental rig and in-
strumentation are shown in Fig. 10. The test rotor consisted
of a single mass (0.86 kg) centrally located on a 9.53 mm dia
steel shaft. The bearing span was 39.05 cm. The rotational
speed was controlled with a 1/6 hp dc motor. The first critical
speed of the rotor was 2700 rpm.

The rig was instrumented with three displacement trans-
ducers. Two were located near the mass and the third was
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placed over a notch on one end of the shaft. The two central
probes were calibrated and particular probes were chosen
such that the two calibration curves were matched. Thus,
direct comparison of the outputs of the X and Y probes was
possible.

Data were analyzed using a synchronous tracking filter.
The notch on the shaft was used as the trigger for the tracking
filter. Outputs from the tracking filter included total or
synchronous amplitude and synchronous phase angle
(measured with respect to the notch). Only synchronous
responses are presented in this paper. Reduced data were
plotted using an analog plotter. Raw signals from the
displacement probes were recorded on an FM tape recorder so
that permanent records were obtained for all tests.

The rig was run for very low acceleration rates (less than 50
rpm/s) such that acceleration was negligible [15]. The rig was
initially run for the no-bow (ideal) case. From this base run,
system damping was determined. The rotor was next run for
12 bowed cases, of which four typical cases are presented
herein. Both the amplitude of the bow and its angular position
were varied.

Results from the baseline run are presented in Fig. 11. For

NOTCH ROTOR
PROBES —
a =
CONTROLLER —=
Y x|
L ®
OSCILLATOR/
DEMODULATORS
RAW SIGNAL O O
TACH TAPE
SIGNAL [COMPENSATOR RECORDER
0SCILLOSCOPE
SYNCHRONOUS ORBIT DISPLAY
TRACKING X AND Y

L __ FILTER

RPM AMPLITUDE

this initial case, the bow was less than 0.004 mm, as measured
by the displacement probes, thus closely representing an ideal
unbowed shaft. Dial gages at the center of the shaft also
indicated that less than 0.004 mm of mechanical runout was
present. Both Bode and Nyquist responses are shown in Fig.
11. These curves were obtained without the use of the com-
pensator in Fig. 10. At 9000 rpm, the response of the rotor
was 0.042 mm, while the response at the critical speed was
0.762 mm. Thus, an amplification factor of 18.2 was ob-
served which yields a system damping (¢ = 1/24,;) of 0.027.
Also, by measuring the slope of the synchronous phase angle,
one can use equation (15) to determine ¢. This method yielded
¢ = 0.029. An average of the two was used (¢ = 0.028) for
comparison to theoretical predictions.

After the data for the baseline case were analyzed, bowed
rotor cases were run. Shaft warp was induced by loading the
shaft at the center until it plastically deformed. The bow was
determined by rotating the rotor at slow roll (approximately
400 rpm) and measuring the synchronous response. The mass
unbalance was held constant at 0.042 mm and was located in
line with the timing mark (¢,, = 0 deg) for all of the bowed
rotor runs. The five cases that are presented herein, including
the baseline run, are summarized in Table 2. The phase angle
of the bow () is measured with respect to the mass unbalance
determined from Fig. 11. The cases which were of interest
were for 6, = 0.5, 1.0, and 2.0 and v = 0, 90, and 180 deg.
However, due to the technique of bowing the shaft, the exact
bows desired were not obtained. The measured bows are used
in the theoretical predictions. In addition, the bow was
measured both before and after a test in all cases and did not
change by more than 0.004 mm for §, < 1.5. However, for
cases involving particularly large values of §, (i.e., ap-
proximately 2) the bow changed during the tests by as much as
0.015 mm. In these cases, the bowed shaft could not be simply

Table2 Experimental bowed rotor cases

Bow amplitude Bow phase angle

X-Y o, v (deg)
RECORDER 0.00 0 (Baseline run)
0.36 0
0.90 98
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Fig.11 Baselineresponse (5, = 0,y = 0deg)
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Fig. 12 Response curves for 5, = 0.36 and y = 0 deg

modeled and the results of these tests were not considered to
be dependable.

- The taped vibration data were processed for the cases for a
bowed rotor by two methods.

(a) The synchronous component of rotor response was
plotted as a function of angular speed, w, using a synchronous
tracking filter. The compensator in Fig. 10 was bypassed for
these tests.

(b) The low speed response (due to bow) was subtracted
from the synchronous component of vibrations using the
runout compensator plotted as a function of w. The low speed
response was measured at approximately 400 rpm. At this low
speed, dynamic shaft forces are small and may be neglected.

Experimental Results

Four typical cases are shown in Figs. 12-15. In these
figures, reduced data are presented both without and with low
speed compensation. Two sets of theoretical results are also
presented on these figures. First, theoretical results using the
measured value of 5, and vy are presented for a bowed rotor.
Second, using the measured value of 4, for 4, and the
measured value of v for ¢,, the theoretical results for a rotor
with runout are plotted. Thus, the two theoretical cases
display equal low speed responses. :

The first case (5, = 0.36, ¥ = 0 deg) is presented in Fig. 12.
First consider the uncompensated run. By comparison of the
experimental amplitude response to the unbowed case (Fig.
11), one can see that the response at the critical speed is in-
creased due to the bow. For example, the response with no
bow is 0.075 mm compared to 0.100 mm with the bow. Also,
the theoretical predictions for the model with residual bow is
nearly identical to the experimental data, while the model with
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Fig.13 Response curves for 5, = 0.90 and y = 98 deg

runout predicts a low value of amplitude at the critical speed.
The experimental phase angle response closely resembles that
of the unbowed case and also agrees well with the two
theoretical predictions, which are nearly identical.

In Fig. 12, the compensated experimental data and
theoretical predictions are also plotted. As can be seen,
compensation does not greatly affect the results for this case.
Theoretical and experimental results for a bowed rotor are in
excellent agreement, particularly at the critical speed (less
than 3 percent difference in amplitude). The amplitudes of the
compensated experimental and theoretical bowed rotor do
not, however, agree well with the predicted compensated rotor
with runout (ideal) response (27 percent difference at the
critical speed).

In Fig. 13, results are presented for §, = 0 and v = 98 deg.
The uncompensated amplitude of response is larger than the
ideal case (Fig. 11) and is in agreement with bowed rotor
predictions. The uncompensated experimental phase angle is
seen to increase with increasing speed before decreasing as
predicted by bow theory. With compensation, the ex-
perimental and theoretical (bow) are again in excellent
agreement for rotational speeds greater than 1000 rpm. For
lower speeds, the synchronous tracking filter was not able to
track phase due to the low amplitude. Also, for speeds greater
than 1000 rpm, the shapes of the compensated bow ex-
perimental and theoretical phase angle results are in good
agreement with theoretical compensated runout results (ideal
case), i.e., the slopes are nearly identical.

The case for v = 180 deg and §, = 0.66 is presented in Fig.
14. Also shown in Fig. 14 is the experimental Nyquist form of
the response plot. Figure 14 displays several interesting
features. (a) The experimental uncompensated amplitude
becomes zero at 2150 rpm. Bowed rotor theory predicts the
amplitude to be zero at 2190 rpm. (») The maximum rotor
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response is only 0.29 mm, which is very close to the predicted
value of 0.27 mm, but which is significantly different (by over
150 percent) from the amplitude predicted by runout theory
(0.76 mm). (c) A nearly instantaneous 180 deg phase shift
was experienced experimentally at 2150 rpm. This sudden
phase shift was predicted to occur at 2190 rpm by bow theory.
For comparison, runout theory predicted a gradual shift
spanning 500 rpm. This sudden 180 deg phase angle shift
represents the time at which the Nyquist response passes
through the origin. Also, the radius of the Nyquist plot is
significantly smaller than the radius for the unbowed rotor
(Fig. 11), as a result of the bow at 180 deg. This observation is
consistent with the theoretical predictions earlier in this paper.
No ““minor’’ or inside loops are observed on this Nyquist
plot. None were observed on any of the other cases run, in-
dicating that bow alone cannot cause such behavior.

In Fig. 14, compensation has small effects on the amplitude
response. It does, however, cause the phase angle response to
closely resemble the ideal response for speeds greater than
1000 rpm.

The final case is presented in Fig. 15 and has §, = 0.99 and
¥ 192 deg. In Fig. 15, the maximum experimental am-
plitude is only 0.21 which agrees with bowed rotor theory well
but is not in agreement with runout theory (0.75 mm). The
experimental phase angle also agrees well with bow theory. A
net phase angle shift of 360 deg is experienced which agrees
with the observations of a large scale test rig [14]. When §, =
1.00 and « is slightly larger than 180 deg, a 360 deg phase shift
is seen. The phase angle response for a rotor with runout is
also seen to shift by 360 deg. This runout curve has a
‘‘plateau’’ at 380 deg as compared to the bowed rotor
prediction which is smooth. The experimental data do have a
very slight plateau which indicates a small amount of runout
is present.
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The compensated results for the final case are also
presented in Fig. 15. The experimental results again compare
well with the bowed rotor predicted results. The shapes of the
three phase angle curves are very similar for speeds in excess
of 1000 rpm.

Conclusions

A Jeffcott rotor was theoretically modeled having both a
bowed shaft and electrical/mechanical runout. A theoretical
model was also developed to employ constant subtraction of
the slow roll amplitude of vibration from the response am-
plitude. Equations were derived whereby the response and
compensated response for any bow, unbalance, and runout
can be calculated. Equations are also presented whereby the
errors associated with runout subtraction applied to a bowed
rotor can be estimated. Samples cases were presented
demonstrating the use of the equations.

A small rotor was also experimentally tested with various
values of bow. The rotor was first tested with no bow and
then tested with 12 vectoral values of bow, of which four are
presented herein. The data were analyzed both not using and
using low speed (slow roll) compensation. Experimental
results are compared to theoretical predictions for both
bowed rotors and rotors with runout.

Specific conclusions include the following.

1 Significant differences in theoretical response plots for
rotors with runout and bow are evidenced. The most
pronounced differences are observed in Nyquist plots where
the relative response of a bowed rotor is strongly dependent
on the circumferential position of the bow, i.e., the radius of
the Nyquist circle varies with vy. The relative responses of a
rotor in a Nyquist plot with runout are not a function of
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circumferential location, i.e., the radius of the Nyquist circle
does not vary with ¢,.

2 When the phase angle of the bow is equal to 180 deg, a
sudden phase angle shift of 180 deg is theoretically predicted
at a value of w/w,, dependent on §,. However, no such sudden
shift in phase angle is present with a rotor with runout.

3 For a bowed rotor with §, = 1.00, a particular phase
angle is predicted (which depends on ¢{) for which the response
is nearly constant for all rotational speeds. For { = 0.1, this
angle is predicted to be approximately. 169 deg.

4 Employing compensation to a rotor runout not incur any
errors as should be expected. Employing such compensation
for bowed rotors has been predicted to incur significant
errors. The amplitude response plots are not improved with
compensation. The shapes of the phase angle responses are
incorrect for low values of w/w, but closely approximate the
ideal phase angle plots for w/w, > 0.7.

5 By measuring the slope of the phase angle in a Bode plot
at the critical speed, one can determine the system damping
for an unbowed rotor without runout. Such a technique for a
bowed rotor without compensation usually leads to
significant errors. However, by using such compensation the
errors are predicted to be reduced to 5 percent or less.

6 For cases with combined bow and runout, if a com-
pensator is used the indicated response is the bowed rotor
response with compensation.

7 Experimental results compare much better to bowed
rotor predictions than to predictions for a rotor with runout.

8 Low speed compensation does not cause the amplitude
response to represent the ideal unbowed rotor response, as
shown experimentally.

9 Low speed compensation does cause the shape of the
phase response to closely represent the ideal unbowed rotor
response, as shown experimentally.

10 The radius of the response in Nyquist form is strongly
dependent on the bow vector, as shown experimentally.
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